
This chapter presents a methodology to optimize the capacity and power of the ultracapacitor (UC) energy storage device and also the fuzzy logic supervision strategy for a battery electric vehicle (BEV) equipped with electrochemical battery (EB). The aim of the optimization was to prolong the EB life and consequently to permit financial economies for the end-user of the BEV. Eight variables were used in the optimization process: two variables that control the energy storage capacity and power of the UC device and six variables that change the membership functions of the fuzzy logic supervisor. The results of the optimization, using a genetic algorithm from MATLAB®, are showing an increase of the financial economy of 16%.
thema EDItEUR::P Mathematics and Science::PB Mathematics::PBU Optimization, Genetic algorithm optimization, battery electric vehicle, fuzzy logic, ultracapacitor, electrochemical battery
thema EDItEUR::P Mathematics and Science::PB Mathematics::PBU Optimization, Genetic algorithm optimization, battery electric vehicle, fuzzy logic, ultracapacitor, electrochemical battery
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
