
The Web was designed to improve the way people work together. The Semantic Web extends the Web with a layer of Linked Data that offers new paths for scientific publishing and co-operation. Experimental raw data, released as Linked Data, could be discovered automatically, fostering its reuse and validation by scientists in different contexts and across the boundaries of disciplines. However, the technological barrier for scientists who want to publish and share their research data as Linked Data remains rather high. We present two real-life use cases in the fields of chemistry and biology and outline a general methodology for transforming research data into Linked Data. A key element of our methodology is the role of a scientific data curator, who is proficient in Linked Data technologies and works in close co-operation with the scientist.
570, 000, Ontology, E-Science, Linked Data, Research Data Management, Methodology, 540, Semantic Web, Scientific Publishing
570, 000, Ontology, E-Science, Linked Data, Research Data Management, Methodology, 540, Semantic Web, Scientific Publishing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
