Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Öğretme-Öğrenme algoritmasını kullanarak iki yönlü karışık modelli montaj hattı dengeleme

Authors: HAMZADAYI, Alper;

Öğretme-Öğrenme algoritmasını kullanarak iki yönlü karışık modelli montaj hattı dengeleme

Abstract

TheTeaching-Learning Based Optimization (TLBO) algorithm is a population-basedoptimization technique that has been shown to be competitive against otherpopulation-based algorithms. The main purpose of this paper is to solve thebalancing problem of mixed-model two-sided assembly lines by using TLBOalgorithm first time in the literature. Most recently, hybridteaching-learning-based optimization (HTLBO) algorithm is proposed by [1] forsolving the balancing of stochastic simple two-sided assembly line problem. TheHTBLO algorithm is compared with the well-known 10 different meta-heuristicalgorithms in the literature in [1]. The tests performed underlined that HTLBOalgorithm presented more outstanding performance when compared to otheralgorithms. In this paper, HTLBO algorithm is also adapted for solving theproblem of balancing mixed-model two-sided assembly line and its performance isanalysed. The objective function of this study is to minimize the number ofmated-stations and total number of stations for a predefined cycle time. Acomprehensive computational study is conducted on a set of test problems thatare taken from the literature and the performance of the algorithms arecompared with existing approaches. Experimental results show that TLBOalgorithm has a noticeable potential against to the best-known heuristicalgorithms and HTLBO algorithm results show that it performs well as far as thebest-known heuristic algorithms for the problem in the literature.

Öğretme-Öğrenme-TabanlıEniyileme (ÖÖTE) algoritması, diğer popülasyon-tabanlı algoritmalar kadar etkinolduğu ortaya konmuş, popülasyon-tabanlı bir eniyileme algoritmasıdır. Bumakalenin temel amacı, ÖÖTE algoritmasını kullanarak iki yönlü karışık modellimontaj hattı dengeleme problemini ilk defa çözmektir. Yakın zamanda, stokastikiki yönlü tek modelli montaj hattı dengeleme problemini çözmek için [1]’demelez öğretme-öğrenme-tabanlı eniyileme (MÖÖTE) algoritması önerilmiştir.[1]’de MÖÖTE algoritması en iyi bilinen 10 farklı meta-sezgisel algoritma ilekarşılaştırılmıştır. Yapılan testler MÖÖTE algoritmasının diğer algoritmalaragöre daha üstün bir performans sergilediğini ortaya koymuştur. Bu makaledeayrıca, MÖÖTE algoritması iki yönlü karışık modelli montaj hattı dengelemeproblemini çözmek için adapte edilmiş ve algoritmanın performansı testedilmiştir. Bu çalışmanın amacı önceden tanımlanmış çevrim süresinde karşılıklıeşleşen istasyon sayısını ve toplam istasyon sayısını en aza indirmektir.Literatürden alınan test problem grupları üzerinden kapsamlı bir deneyselçalışma gerçekleştirilmiştir ve algoritmaların performansları var olan yaklaşımlarlakarşılaştırılmıştır. Deneysel çalışmalar ÖÖTE algoritmasının karşılaştırılandiğer en iyi bilinen sezgisel algoritmalara karşı göze çarpan bir potansiyelesahip olduğunu ve problemin çözümünde MÖÖTE algoritmasının bilinen en iyisezgisel algoritmalar kadar iyi performans sergilediğini ortaya koymuştur.

Related Organizations
Keywords

Engineering, Assembly line balancing;Teaching-learning based optimization algorithm;Hybrid teaching-learning based optimization algorithm;Two-sided assembly lines;Mixed-model assembly lines, Mühendislik, Montaj hattı dengeleme;Öğretme-öğrenme-tabanlı eniyileme algoritması;Melez öğretme-öğrenme-tabanlı eniyileme algoritması;İki yönlü montaj hatları;Karışık modelli montaj hatları

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!