Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Twente...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Model-Derivation Framework for Timing Analysis of Java Software Systems

Authors: Yildiz, Bugra Mehmet; Rensink, Arend; Bockisch, Christoph; Aksit, Mehmet;

A Model-Derivation Framework for Timing Analysis of Java Software Systems

Abstract

One of the main challenges in developing a software system is to assure that its properties fulfill the specifications. In the context of this paper, we are especially interested in timing properties. Model-based software verification is one of the approaches to achieve this. However, model-based verification requires expressive models of software systems and deriving such models is not a trivial task. Although there are a few model derivation tool proposals for the purpose of model-checking timing properties, these are dedicated tools supporting a selected set of verification techniques and as such they are not explicitly designed for coping with new demands. This paper presents a framework that derives models from Java programs in an automated way for analyzing timing properties. The framework has the following properties that are not provided by the previous proposals: (1) Efficiency in model development, (2) consistency of models with software, (3) expressiveness of models, (4) scalability and (5) extensibility of the model derivation process.

Related Organizations
Keywords

CR-C.4, CR-I.6.5, Model checking, Model-driven software engineering, Timing analysis, SE-MDA: Model Driven Architecture, Automatic model derivation, SE-MC: Model Checking, Model transformation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities