
One of the main challenges in developing a software system is to assure that its properties fulfill the specifications. In the context of this paper, we are especially interested in timing properties. Model-based software verification is one of the approaches to achieve this. However, model-based verification requires expressive models of software systems and deriving such models is not a trivial task. Although there are a few model derivation tool proposals for the purpose of model-checking timing properties, these are dedicated tools supporting a selected set of verification techniques and as such they are not explicitly designed for coping with new demands. This paper presents a framework that derives models from Java programs in an automated way for analyzing timing properties. The framework has the following properties that are not provided by the previous proposals: (1) Efficiency in model development, (2) consistency of models with software, (3) expressiveness of models, (4) scalability and (5) extensibility of the model derivation process.
CR-C.4, CR-I.6.5, Model checking, Model-driven software engineering, Timing analysis, SE-MDA: Model Driven Architecture, Automatic model derivation, SE-MC: Model Checking, Model transformation
CR-C.4, CR-I.6.5, Model checking, Model-driven software engineering, Timing analysis, SE-MDA: Model Driven Architecture, Automatic model derivation, SE-MC: Model Checking, Model transformation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
