Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Noether exponent and the Łojasiewicz exponent. II

Authors: Chądzyński, Jacek; Krasiński, Tadeusz;

The Noether exponent and the Łojasiewicz exponent. II

Abstract

La notation est celle de l'article précédent [ibid., No.11, 16 p. (1986; voir l'article précédent)], avec en outre \(| z| =\sup (| x|,| y|)\) pour \(z=(x,y)\). L'exposant de Łojasiewicz \(\lambda\) (h) de l'application \(h=(f,g)\) est le plus petit \(\lambda \in {\mathbb{R}}_+\) tel que \(| z|^{\lambda}/| h(z)|\) ait une \(\limsup\) finie quand \(z\to 0\), et il est toujours rationnel. Il vaut sup(m,n) si et seulement si in f et in g sont premiers entre eux; on le calcule explicitement dans quelques cas particuliers où l'on a \(f=f_ 0f_ 1...f_ r\), in \(f_ 0\) et in g premiers entre eux, les in \(f_ i\) \((i=1,...,r)\) premiers entre eux et chacun d'eux une puissance d'un facteur linéare divisant in g. On conclut par un exemple où \(\lambda\) (h) n'est pas entier: \(f=x^ 2-y^ 3,\) \(g=x^ 3\).

Keywords

Noether exponent, estimations, Holomorphic functions of several complex variables, Local complex singularities, Entire functions of several complex variables, isolated zero polynomial, holomorphic mapping, Analytic algebras and generalizations, preparation theorems, order, Łojasiewicz exponent, isolated zero

Powered by OpenAIRE graph
Found an issue? Give us feedback