
This paper presents the participation of the IRIT laboratory (University of Toulouse) to the Microblog Track of TREC 2015. This track consists in a real-time filtering task aiming at monitoring a stream of social media posts in accordance to a user's interest profile. In this context, our team proposes three approaches: (a) a novel selective summarization approach based on a decision of selecting/ignoring tweets without the use of external knowledge and relying on novelty and redundancy factors, (b) a processing workflow enabling to index tweets in real-time and enhanced by a notification and digests method guided by diversity and user personalization, and (c) a step by step stream selection method focusing on rapidity, and taking into account tweet similarity as well as several features including content, entities and user-related aspects. For all these approaches, we discuss the obtained results during the experimental evaluation.
Social media, Théorie de l'information, Redundancy, Personalization, Entities, Novelty, Rapidity, Recherche d'information, User profile, Filtering, Real-time, Clustering
Social media, Théorie de l'information, Redundancy, Personalization, Entities, Novelty, Rapidity, Recherche d'information, User profile, Filtering, Real-time, Clustering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
