Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Archive Toulous...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

IRIT at TREC Microblog 2015.

Authors: Chellal, Abdelhamid; Ben Jabeur, Lamjed; Soulier, Laure; Moulahi, Bilel; Palmer, Thomas; Boughanem, Mohand; Pinel-Sauvagnat, Karen; +2 Authors

IRIT at TREC Microblog 2015.

Abstract

This paper presents the participation of the IRIT laboratory (University of Toulouse) to the Microblog Track of TREC 2015. This track consists in a real-time filtering task aiming at monitoring a stream of social media posts in accordance to a user's interest profile. In this context, our team proposes three approaches: (a) a novel selective summarization approach based on a decision of selecting/ignoring tweets without the use of external knowledge and relying on novelty and redundancy factors, (b) a processing workflow enabling to index tweets in real-time and enhanced by a notification and digests method guided by diversity and user personalization, and (c) a step by step stream selection method focusing on rapidity, and taking into account tweet similarity as well as several features including content, entities and user-related aspects. For all these approaches, we discuss the obtained results during the experimental evaluation.

Country
France
Keywords

Social media, Théorie de l'information, Redundancy, Personalization, Entities, Novelty, Rapidity, Recherche d'information, User profile, Filtering, Real-time, Clustering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green