
The recent technological and scientific advances has allowed for the fabrication and ever-progressing characterization of interacting quantum mechanical systems. I focus on the theoretical description of such hybrid quantum systems. Specifically, I discuss two prototypical classes of light-matter systems: polaritonic and optomechanical systems. They are characterized by linear and nonlinear quantum mechanical interactions, respectively. I introduce possible physical realizations, discuss light-matter interaction giving rise to polaritons, and derive optomechanical interaction for a ferromagnetic system. The experimental reality also requires an understanding of dissipation and decoherence. I therefore describe how input-output formalism can be employed to model the optical response of open hybrid quantum systems. In addition, I discuss the possibility of the electromagnetic vacuum modifying chemistry by the formation of hybridized light-matter states, polaritons. These theoretical approaches to open hybrid quantum systems have wider applicability than their physical realizations and further elucidates the possibilities of light-matter interaction. This dissertation is composed of an introductory text and five publications — three of which have been published while two are under peer review at the time of writing.
ei tietoa saavutettavuudesta
unknown accessibility
ta114, kvanttimekaniikka, kvanttifysiikka, polaritonit, väitöskirjat
ta114, kvanttimekaniikka, kvanttifysiikka, polaritonit, väitöskirjat
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
