Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ePubWU Institutional...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Global Optimization
Article . 2022
License: unspecified
Data sources: WU Research
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convex Projection and Convex Vector Optimization

Authors: Kovacova, Gabriela; Rudloff, Birgit;

Convex Projection and Convex Vector Optimization

Abstract

In this paper we consider a problem, called convex projection, of projecting a convex set onto a subspace. We will show that to a convex projection one can assign a particular multiobjective convex optimization problem, such that the solution to that problem also solves the convex projection (and vice versa), which is analogous to the result in the polyhedral convex case considered in Löhne and Weißing (Math Methods Oper Res 84(2):411–426, 2016). In practice, however, one can only compute approximate solutions in the (bounded or selfbounded) convex case, which solve the problem up to a given error tolerance. We will show that for approximate solutions a similar connection can be proven, but the tolerance level needs to be adjusted. That is, an approximate solution of the convex projection solves the multiobjective problem only with an increased error. Similarly, an approximate solution of the multi-objective problem solves the convex projection with an increased error. In both cases the tolerance is increased proportionally to amultiplier. Thesemultipliers are deduced and shown to be sharp. These results allow to compute approximate solutions to a convex projection problem by computing approximate solutions to the corresponding multi-objective convex optimization problem, for which algorithms exist in the bounded case. For completeness, we will also investigate the potential generalization of the following result to the convex case. In Löhne and Weißing (Math Methods Oper Res 84(2):411–426, 2016), it has been shown for the polyhedral case, how to construct a polyhedral projection associated to any given vector linear program and how to relate their solutions. This in turn yields an equivalence between polyhedral projection, multi-objective linear programming and vector linear programming. We will show that only some parts of this result can be generalized to the convex case, and discuss the limitations.

Country
Austria
Keywords

Mathematics Subject Classification 52A20, 90C29, 90C25, 502009 Corporate finance, 502009 Finanzwirtschaft, Convex projection, Convex vector optimization, Convex multi-objective optimization, 101024 Wahrscheinlichkeitstheorie, 101007 Finanzmathematik, 101024 Probability theory, 101007 Financial mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green