Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Directory of Open Ac...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shale Oil and Shale Gas Resources

Authors: Torres, José A.; Klie, Hector;

Shale Oil and Shale Gas Resources

Abstract

This multidisciplinary book covers a wide range of topics addressing critical challenges for advancing the understanding and management of shale oil and shale gas resources. Both fundamental and practical issues are considered. By covering a variety of technical topics, we aim to contribute to building a more integrated perspective to meet major challenges faced by shale resources. Combining complementary techniques and examining multiple sources of data serve to advance our current knowledge about these unconventional reservoirs. The book is a result of interdisciplinary and collaborative work. The content includes contributions authored by active scientists with ample expertise in their fields. Each article was carefully peer-reviewed by researchers, and the editorial process was performed by an experienced team of Senior Editors, Guest Editors, Topic Editors, and Editorial Board Members. The first part is devoted to fundamental topics, mostly investigated on the laboratory scale. The second part elaborates on larger scales (at near-wellbore and field scales). Finally, two related technologies, which could be relevant for shale plays applications, are presented. With this Special Issue, we provide a channel for sharing information and lessons learned collected from different plays and from different disciplines.

Keywords

Niutitang formation, fracturing, XRD, XRF, finite element analysis, fluid-solid-heat coupling, DSC, shale, oil shale, sensitivity analysis, well integrity, EDX, Chang 7 reservoir, imbibition, flowback fluid, well, tight oil recovery, shale gas reservoir, TGA, multistage fracturing, shale reservoir, fracturing fluid, liner hanger, fracture mode, elemental analysis, oil production, volume fracturing, SEM, isolated organic matter, osmotic hydration, TA1-2040, shale oil, optimization, solid-liquid extraction, negative extreme swelling ratio, dynamic crack initiation toughness, anisotropy, pore size distribution, shale drilling fluid, thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology, T1-995, shear deformation, unconventional, safety levels of activity, contact pressure, shale reservoirs, Jordan, NSCB specimen, fuling gas field, surface hydration, Wufeng-Longmaxi shale, quantitative evaluation, borehole stability, elastomer seal, ionic stabilizer, leaching, FTIR, organic matter pores, numerical simulation, Multi Finger Caliper, seismic wavefield

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green