
The paper presents a method for improving the performance of RGB image convolution operation on the ARM64 platform using a convolution kernel element clustering algorithm. The proposed approach is based on vectorization of computations using NEON64 SIMD instructions and grouping of non-zero kernel elements with the same sign for efficient skipping of operations with zero elements. A mathematical model of vectorized convolution operation has been developed, which takes into account the specifics of sparse convolution kernel matrices. Experimental study on the Orange Pi 5 Pro platform demonstrated significant acceleration compared to the cv::filter2D() function of the OpenCV library: for medium-sized kernels (7×7 – 11×11), an acceleration of 5.0–9.7 times was achieved, for large kernels (12×12 – 15×15) – 1.7–5.5 times. The proposed method is particularly effective for processing high-resolution images and can be applied in real-time systems on single-board computers with limited computational resources. У статті представлено метод підвищення швидкодії операції згортки RGB-зображень на платформі ARM64 з використанням алгоритму кластеризації елементів ядер згортки. Запропонований підхід базується на векторизації обчислень з використанням SIMD-інструкцій NEON64 та групуванні ненульових елементів ядра згортки однакового знаку для ефективного пропуску операцій з нульовими елементами. Розроблено математичну модель векторизованої операції згортки, яка враховує специфіку розріджених матриць ядер згортки. Експериментальне дослідження на платформі Orange Pi 5 Pro продемонструвало значне прискорення порівняно з функцією cv::filter2D() бібліотеки OpenCV: для ядер середнього розміру (7×7 – 11×11) досягнуто прискорення в 5,0–9,7 разів, для великих ядер (12×12 – 15×15) – в 1,7–5,5 разів. Запропонований метод особливо ефективний для обробки зображень високої роздільної здатності та може бути застосований у системах реального часу на одноплатних комп'ютерах з обмеженими обчислювальними ресурсами.
convolution operation, convolution kernel clustering, sparse matrices, кластеризація ядер згортки, векторизація, SIMD optimization, digital image processing, RGB-зображення, SIMD-оптимізація, цифрова обробка зображень, операція згортки, vectorization, розріджені матриці, RGB images, ARM64, OpenCV, NEON64
convolution operation, convolution kernel clustering, sparse matrices, кластеризація ядер згортки, векторизація, SIMD optimization, digital image processing, RGB-зображення, SIMD-оптимізація, цифрова обробка зображень, операція згортки, vectorization, розріджені матриці, RGB images, ARM64, OpenCV, NEON64
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
