Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SAGe: A Lightweight Algorithm-Architecture Co-Design for Mitigating the Data Preparation Bottleneck in Large-Scale Genome Sequence Analysis

Authors: Ghiasi, Nika Mansouri; Güloglu, Talu; Mustafa, Harun; Firtina, Can; Koliogeorgi, Konstantina; Kanellopoulos, Konstantinos; Mao, Haiyu; +4 Authors

SAGe: A Lightweight Algorithm-Architecture Co-Design for Mitigating the Data Preparation Bottleneck in Large-Scale Genome Sequence Analysis

Abstract

Genome sequence analysis, which analyzes the DNA sequences of organisms, drives advances in many critical medical and biotechnological fields. Given its importance and the exponentially growing volumes of genomic sequence data, there are extensive efforts to accelerate genome sequence analysis. In this work, we demonstrate a major bottleneck that greatly limits and diminishes the benefits of state-of-the-art genome sequence analysis accelerators: the data preparation bottleneck, where genomic sequence data is stored in compressed form and needs to be decompressed and formatted first before an accelerator can operate on it. To mitigate this bottleneck, we propose SAGe, an algorithm-architecture co-design for highly-compressed storage and high-performance access of large-scale genomic sequence data. The key challenge is to improve data preparation performance while maintaining high compression ratios (comparable to genomic-specific compression algorithms) at low hardware cost. We address this challenge by leveraging key properties of genomic datasets to co-design (i) a new (de)compression algorithm, (ii) hardware that decompresses data with lightweight operations and efficient streaming accesses, (iii) storage data layout, and (iv) interface commands to access data. SAGe is highly versatile as it supports datasets from different sequencing technologies and species. Thanks to its lightweight design, SAGe can be seamlessly integrated with a broad range of genome sequence analysis hardware accelerators to mitigate their data preparation bottlenecks. Our results demonstrate that SAGe improves the average end-to-end performance and energy efficiency of two state-of-the-art genome sequence analysis accelerators by 3.0x-32.1x and 13.0x-34.0x, respectively, compared to when the accelerators rely on state-of-the-art decompression tools.

Keywords

Hardware Architecture, Genomics (q-bio.GN), FOS: Computer and information sciences, FOS: Biological sciences, Hardware Architecture (cs.AR), Distributed, Parallel, and Cluster Computing, Genomics, Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average