
Serangan siber seperti zero-day attacks dan APT menjadi tantangan serius bagi sistem deteksi intrusi jaringan, terutama yang masih mengandalkan metode berbasis tanda tangan. Penelitian ini bertujuan merancang sistem deteksi anomali jaringan berbasis hybrid ensemble learning dengan menggabungkan algoritma Isolation Forest, K-Means, dan Random Forest menggunakan metode majority voting. Proses penelitian meliputi preprocessing data, pelatihan dan evaluasi model menggunakan dataset publik CSE-CIC-IDS2018. Evaluasi dilakukan dengan metrik akurasi, precision, recall, F1-score, dan AUC. Hasil menunjukkan bahwa pendekatan hybrid ini meningkatkan akurasi deteksi hingga 99,9% dan menurunkan false positive secara signifikan dibanding pendekatan tunggal. Sistem yang diusulkan terbukti lebih adaptif dan efisien dalam mengidentifikasi berbagai pola serangan siber, serta memberikan kontribusi terhadap pengembangan teknologi keamanan jaringan yang lebih andal.
Deteksi Anomali, Hybrid Ensemble, Keamanan Siber, Serangan Siber, Network Intrusion Detection Sistem, Anomaly Detection, Cyber Attack, Cyber Security, Hybrid Ensemble, Network Intrusion Detection System
Deteksi Anomali, Hybrid Ensemble, Keamanan Siber, Serangan Siber, Network Intrusion Detection Sistem, Anomaly Detection, Cyber Attack, Cyber Security, Hybrid Ensemble, Network Intrusion Detection System
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
