Powered by OpenAIRE graph
Found an issue? Give us feedback

Iodide in the ocean:distribution and impact on iodine flux and ozone loss

Funder: UK Research and InnovationProject code: NE/N009983/1
Funded under: NERC Funder Contribution: 431,593 GBP
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
120
55

Iodide in the ocean:distribution and impact on iodine flux and ozone loss

Description

Over the last five years, research led by this team has made it apparent that the reaction of iodide with ozone at the sea surface plays an important role in controlling the chemical composition of the troposphere. This process directly controls the deposition of O3 to the oceans and is the dominant source of reactive iodine to the atmosphere, which leads to significant loss of tropospheric O3. Ozone concentrations are directly impacted but through changes to the atmospheric oxidants, indirect changes also occur to methane and aerosols leading to potential ramifications on climate, air quality and food security. This is likely a biogeochemical negative feedback for tropospheric O3 and oxidants, which, since it is dependent on both atmospheric O3 and ocean iodide concentrations, will have changed over time. Iodine is also an essential human nutrient. The transport of iodine from the oceans to the atmosphere and subsequent deposition over land is a pathway by which marine iodine may enter the terrestrial food chain, and iodine radioisotopes released to the sea may be dispersed. These iodine ocean-atmosphere processes are now being incorporated into chemical transport models but critical uncertainties remain. The marine iodide distribution is poorly understood, yet it is likely that it will be subject to change as a result of changes in ocean circulation, biological productivity and ocean deoxygenation. This proposal brings together marine and atmospheric scientists in order to address uncertainties in the marine iodine flux and associated ozone sink. Specifically, it aims to quantify the dominant controls on the sea surface iodide distribution and improve parameterisation of the sea-to-air iodine flux and of ozone deposition. This will be achieved through a combination of laboratory experiments, field measurements and ocean and atmospheric modelling.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 120
    download downloads 55
  • 120
    views
    55
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a5e8647eaae48fd11fd97d9ad24bc577&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down