Powered by OpenAIRE graph
Found an issue? Give us feedback

A Small Research Facility for Multi-phase Flows at High Pressure and Temperature

Funder: UK Research and InnovationProject code: EP/P020593/1
Funded under: EPSRC Funder Contribution: 1,414,900 GBP
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
298
42

A Small Research Facility for Multi-phase Flows at High Pressure and Temperature

Description

The University of Edinburgh is purchasing a steady flow, high pressure (P < 120 bar) and temperature (T < 1000 K) optically accessible jet and spray research chamber. This chamber is unique within the UK. In addition, the university is also buying a single-cylinder optically accessible research engine. The chamber can be used to study sprays of all kinds; how they develop and react. The engine can be used to study transient fuel sprays as they interact with realistic in-cylinder flows. With this grant, the University of Edinburgh will acquire highly advanced laser diagnostics for multi-parameter measurements in the new chamber and engine, and in other related experimental devices, as a means to leverage the university's substantial equipment investment (£1.4 million) into a UK-wide Small Research Facility (SRF). The measurements to be acquired by this SRF include: a) A femtosecond laser system and ancillary devices (e.g. a second harmonic bandwidth compression system (SHBC), frequency resolved optical gating (FROG) to characterize the pulses etc.). The system will be used for hybrid picosecond/femtosecond rotational CARS (coherent anti-Stokes Raman spectroscopy), for line-image temperature and species (e.g. O2, N2, H2 etc.) in the jet/spray equipment, and ballistic imaging for investigation of primary breakup in highly atomizing sprays. b) High-speed (HS) 2-pulse, 532 nm wavelength laser and HS imaging systems for HS stereoscopic PIV, SLIPI imaging, and LII for particulate. A HS 1-pulse, 355/266 nm wavelength laser and HS intensifier system for HS PLIF, phosphors, and LITA. c) A phase Doppler instrument for droplet/particle size distribution and velocity in reactive jets and sprays The combined equipment and diagnostics will enable new studies on: a) Fuel sprays (including alternative fuels), and b) Supercritical materials synthesis (biofuels, pharmaceuticals, nano-catalysts, polymers etc.). Our research goals are multi-faceted. The research will enable more efficient combustion engines, reducing their impact on the climate. It will also make it possible to understand and then improve supercritical processing for materials synthesis, helping bring such products to market more effectively. In so doing we will address critical needs for both established industries and for key emerging industries across the UK.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 298
    download downloads 42
  • 298
    views
    42
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5438fe4e8bc1799a2ff87bd312773e6d&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down