The vision of this fellowship is to develop the requisite understanding of multicomponent low molecular weight gels such that they can be used for practical applications in energy, complementing the growing body of work on the use of these systems in medicine and drug delivery. Multicomponent gels offer significant new opportunities in terms of generating useful and exciting new structures. Specifically in this fellowship, we will develop conductive materials, as well as bulk heterojunctions, using low molecular weight gelators. This requires specific assembly of multiple components with careful control over the assembly across many length-scales. The aim here is to develop effective solar cells in an unprecedented way. Currently, multicomponent systems are rare and introduce significant complexity and questions: for example, do the components mix, specifically or randomly, or do they self-sort, to create assemblies of one pure component co-existing with pure assemblies of the other? Also, once the primary assembly has occurred, how are these structures distributed in space? Do they interact randomly, or can specific, higher-order structures be formed? Such questions are fundamental to the development of technology such as solar cells, where energy transfer between the molecular components is core to their function. A particular challenge here is to guide multicomponent self-assembling systems across many length-scales, precisely positioning individual molecules or assemblies within well organised, highly-ordered structures in order to achieve a reproducible, highly-controlled network. Here, I focus on a class of low molar mass gelators with which I have significant experience. I will develop a thorough understanding of the conditions under which gelation occurs for each component to prepare gels where components are specifically located. For success, I will develop systems consisting of two LMWG containing aromatic groups whose spectral adsorptions complement each other with appropriate HOMO and LUMO levels. I will develop methods to ensure that well-ordered self-sorted structures are formed, which entangle to form structures with a suitable interface. This requires control over assembly across multiple length-scales. The main challenges here focus on ensuring the microstructure is correct and that the percolation paths are ideal. There is limited understanding for single LMWG systems, let alone for two-component systems. As such, this work will take the area significantly beyond the current state of the art and also provides a new application for these materials through their development for solar cell technology.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ef02dd1c1afc3da3a446370a38d7c1d9&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ef02dd1c1afc3da3a446370a38d7c1d9&type=result"></script>');
-->
</script>
SAMS is a proposed 3-year project to that will investigate the potential for novel data and text mining techniques for detecting subtle signs of Cognitive Dysfunction that may indicate the early stages of Alzheimer's disease. Promoting self-awareness of change in cognitive function is will investigate the potential for novel data and text mining techniques for detecting subtle signs of change in cognition that may indicate the early stages of Alzheimer's disease. Promoting self-awareness of change in cognitive function is a key step in encouraging people to self-refer for clinical evaluation. A key motivation for SAMS, therefore, is to provide a non-invasive tool that helps develop such self-awareness. An increasing number of older people, the group most at risk of cognitive dysfunction and dementia, regularly use the Internet to keep in touch with their families, particularly grandchildren. This Internet activity presents an opportunity to harness rich, routinely available information that may contain indications of changes in the linguistic, executive and motor speed abilities in older people. Development work is needed to develop the software to harness this opportunity, to establish the optimal thresholds for flagging up important changes in cognition and the optimal methods for feeding this information back to individuals. SAMS will validate thresholds by examining changes in performance in people with established cognitive dysfunction and mild Alzheimer's disease and begin to explore the potential for technology-enhanced detection of early cognitive dysfunction. Patterns of computer use and content analysis of e-mails, such as forgetting topics, expressions of concern, emotion, etc., will be analysed and coupled to feedback mechanisms to enhance users' cognitive self awareness, empowering them self administer follow up tests and decide when to self refer themselves for expert medical advice. Tackling cognitive change detection requires the novel pooling of knowledge and integration of techniques from different sub-disciplines within a Computer Science. In addition to developing techniques for MCI detection and supporting self-referral, an explicit goal of the research is to develop a generic sense making and user-centred feedback architecture. This could be applied to a wide range of problems where interpreting computer use may be appropriate, e.g. mental health, social loneliness, privacy and social exploitation.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::62d968787e9ecc4e1eb17ade95576faa&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::62d968787e9ecc4e1eb17ade95576faa&type=result"></script>');
-->
</script>
Infection is the main cause of delayed healing in closed surgical wounds, traumatic and burn wounds, and chronic skin ulcers. Infection control for wounds is a contentious issue, particularly against a background of the antimicrobial resistance (AMR) epidemic. Furthermore, treatment of wound infections represents a significant economic burden on NHS resources and the quality of life of patients. Dressings and bandages have a major part to play in the modern management of wounds, with silver-containing dressings being the most commonly used for skin wounds. While these treatments have made great strides in reducing microbial bioburden, there may be potential cytotoxic issues regarding high concentrations of silver needed for reducing infection. Nitric oxide (NO) is a potent antimicrobial agent and has a proven role in wound repair which makes it an excellent candidate for the treatment of wound infections. The aim of this HIP is to improve upon the current silver technologies by embedding NO releasing silver nanoparticles (NP) into state of the art prototype bandages that will exploit NO's dual wound repair and antimicrobial function. These nanoparticles have been developed with previous EPSRC-funded funding (EP/M027325/1 Engineering Nitric Oxide Delivery Platforms for Wound Healing Applications) and we have shown the NO releasing nanoparticles to be extremely potent at killing bacteria present at very high concentrations. This proposal builds on this work by taking on a "personalised medicine" approach and tailoring release rates and concentrations of NO in different formulations for treating infections in the skin and eye. We have brought together clinical project partners with specific and complementary skills in skin wound infection and healing, and surface ocular wound infection and healing. Our commercial partners include a world leading US company that specialises in the fabrication, characterisation, and integration of nanomaterials into products and systems and a UK based SME that is at the forefront of reconstructed in vitro skin technologies that is innovating skincare research and development. Through this partnership, we will develop the clinical applicability, and the technical and commercial viability of antimicrobial NO releasing nanoparticles and their incorporation into bandages to accelerate the bench-to-clinic impact of the proposed research. NO-releasing nanoparticles will be fabricated and optimised to deliver a controlled and sustained release of the therapeutic. We have successfully tethered NO releasing functional groups to silver and gold nanoparticles with control over NO payload. These are first linked to a high molecular weight polymer coatings and then the polymer is conjugated to the particle to ensure high stability. We will optimise the rate of delivery and the amount of site-specific generated NO by controlling the size and shape of the NPs. All NP preparations will be evaluated for their antimicrobial activity against clinically relevant bacterial and fungal strains and their cytocompatibility. These nanoparticles will then be embedded into prototype bandages made from either electrospun polyurethane and alginate or peptide hydrogels depending on their potential application to skin or corneal wounds, respectively. The efficacy of the bandages containing the NO releasing NPs will be tested in in vitro assays and in ex vivo and in vitro 3D models. The development of this technology offers sustainable effective and economic solutions without contributing to the AMR epidemic while simultaneously participating in scientifically excellent, industrially relevant research.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b279e1d879bf051f3dddbf0c87c26053&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b279e1d879bf051f3dddbf0c87c26053&type=result"></script>');
-->
</script>
The vision of this fellowship is to develop the requisite understanding of multicomponent low molecular weight gels such that they can be used for practical applications in energy, complementing the growing body of work on the use of these systems in medicine and drug delivery. Multicomponent gels offer significant new opportunities in terms of generating useful and exciting new structures. Specifically in this fellowship, we will develop conductive materials, as well as bulk heterojunctions, using low molecular weight gelators. This requires specific assembly of multiple components with careful control over the assembly across many length-scales. The aim here is to develop effective solar cells in an unprecedented way. Currently, multicomponent systems are rare and introduce significant complexity and questions: for example, do the components mix, specifically or randomly, or do they self-sort, to create assemblies of one pure component co-existing with pure assemblies of the other? Also, once the primary assembly has occurred, how are these structures distributed in space? Do they interact randomly, or can specific, higher-order structures be formed? Such questions are fundamental to the development of technology such as solar cells, where energy transfer between the molecular components is core to their function. A particular challenge here is to guide multicomponent self-assembling systems across many length-scales, precisely positioning individual molecules or assemblies within well organised, highly-ordered structures in order to achieve a reproducible, highly-controlled network. Here, I focus on a class of low molar mass gelators with which I have significant experience. I will develop a thorough understanding of the conditions under which gelation occurs for each component to prepare gels where components are specifically located. For success, I will develop systems consisting of two LMWG containing aromatic groups whose spectral adsorptions complement each other with appropriate HOMO and LUMO levels. I will develop methods to ensure that well-ordered self-sorted structures are formed, which entangle to form structures with a suitable interface. This requires control over assembly across multiple length-scales. The main challenges here focus on ensuring the microstructure is correct and that the percolation paths are ideal. There is limited understanding for single LMWG systems, let alone for two-component systems. As such, this work will take the area significantly beyond the current state of the art and also provides a new application for these materials through their development for solar cell technology.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::60fb9029d1cdfbc54e6a5f389564ce61&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::60fb9029d1cdfbc54e6a5f389564ce61&type=result"></script>');
-->
</script>