
Depletion of natural resources combined with the extending footprint of mankind has led to a shift in importance of research and development topics. In the 1970s and 1980s process yield was primarily targeted, but emphasis is now focussed on resource efficiency as a primary objective. Routes for resource efficiency have to be identified and implemented to provide a more environmental and resource-oriented technology in near future. MIGRATE is planned as an ETN, gathering top-level research and development capabilities from academia and industry as well as direct application possibilities with the focus set on thermal aspects of gas flows in microstructured systems. Within MIGRATE, a number of ESR projects will cover different aspects of enhanced heat transfer and thermal effects in gases, spanning from modelling of heat transfer processes and devices, development and characterization of sensors and measurement systems for heat transfer in gas flows as well as thermally driven micro gas separators to micro-scale devices for enhanced and efficient heat recovery in automotive, aeronautics and energy generation. This unique combination of university research, SME and world leading industrial stakeholders will contribute in a significant way to the increase of knowledge about micro scale gas flow heat transfer problems as well as to industrial applications of highly efficient miniaturized devices. A characteristic of MIGRATE is the high degree of applicability and the intense training. About 30% of the beneficiaries are from private sector. Thus, ESR projects will be developed in both directions, fundamental academic knowledge as well as direct application in industrial environment. The training of the ESRs is set in the same way to provide a broad variety of skills, reaching from classical academic research to IPR management and all-day-business in a company, being summarized under the aspect of resource efficiency and environmental-friendly technological approaches.
The origins of pollutants inside the aircraft cabin are various. Ozone comes from outside, particularly when the aircraft is flying at high altitudes near the stratospheric ozone layer. In addition to the materials emissions, carbonyl species can be also produced in the cabin by reaction of ozone with unsaturated VOCs. Ozone and VOCs can cause acute respiratory problems, aggravate asthma and increase cardiopulmonary illnesses, with breathing discomfort, irritations and headaches after even short-term exposure. None real-time instruments have been currently developed and specifically designed to meet the constraints in a aircraft, i.e. compactness, security, automatic pressure correction, the autonomy towards a large pure gas cylinder necessary for both its operating and its analytical procedure (blank). The MACAO project aims at developing two analytical instruments to measure VOCs and ozone concentrations and based on microfluidic devices in order to address all the contraints mentioned above. This project will be built on the experience gained in analytical development based on real-time monitoring (CNRS Strasbourg, IN’AIR SOLUTIONS), microfluidics (INSA Toulouse, CNRS Strasbourg) or in electronics and software development (TRONICO) by the partners. For instance, the micro-analyser of BTEX recently developed in Strasbourg will be updated to measure other VOCs such as ethanol or acetone. The MACAO Project will be organised in 5 work Packages as follows : WP1 : Project Management WP2 : Specifications/state of the art/technological choices WP3 : Development and validation of laboratory prototypes WP4 : Development and validation of integrated demonstrators WP5 : Communication & Dissemination In addition, the start-up IN'AIR SOLUTIONS (Partner 4) being responsible for marketing the developed instruments may take advantage of technological advances in this project, for all indoor environments (aircrafts, housing, workplaces, industrial sites, public buildings, …).