Powered by OpenAIRE graph
Found an issue? Give us feedback

Materials Processing Institute (MPI)

Materials Processing Institute (MPI)

9 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/V061798/1
    Funder Contribution: 4,049,200 GBP

    The Materials Made Smarter Centre has been co-created by Academia and Industry as a response to the pressing need to revolutionise the way we manufacture and value materials in our economy. The UK's ability to manufacture advanced materials underpins our ambitions to move towards cleaner growth and a more resource efficient economy. Innovation towards a net zero-carbon economy needs new materials with enhanced properties, performance and functionality and new processing technologies, with enhanced manufacturing capability, to make and deliver economic and societal benefit to the UK. However, significant technological challenges must still be overcome before we can benefit fully from the transformative technical and environmental benefits that new materials and manufacturing processes may bring. Our capacity to monitor and control material properties both during manufacture and through into service affect our ability to deliver a tailored and guaranteed performance that is 'right-first-time' and limit capacity to manage materials as assets through their lifetime. This reduces materials to the status of a commodity - a status which is both undeserved and unsustainable. Future materials intensive manufacturing needs to add greater value to the materials we use, be that through reduction of environmental impact, extension of product life or via enhanced functionality. Digitalisation of the materials thread will help to enhance their value by developing the tools and means to certify, monitor and control materials in-process and in-service improving productivity and stimulating new business models. Our vision is to put the UK's materials intensive manufacturing industries at the forefront of the UK's technological advancement and green recovery from the dual impacts of COVID and rapid environmental change. We will develop the advanced digital technologies and tools to enable the verification, validation, certification and traceability of materials manufacturing and work with partners to address the challenges of digital adoption. Digitisation of the materials thread will drive productivity improvements in materials intensive industries, realise new business models and change the way we value and use materials.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V026402/1
    Funder Contribution: 2,259,080 GBP

    The UK Foundation Industries (Glass, Metals, Cement, Ceramics, Bulk Chemicals and Paper), are worth £52B to the UK economy, produce 28 million tonnes of materials per year and account for 10% of the UK total CO2 emissions. These industries face major challenges in meeting the UK Government's legal commitment for 2050 to reduce net greenhouse gas emissions by 100% relative to 1990, as they are characterised by highly intensive use of both resources and energy. While all sectors are implementing steps to increase recycling and reuse of materials, they are at varying stages of creating road maps to zero carbon. These roadmaps depend on the switching of the national grid to low carbon energy supply based on green electricity and sustainable sources of hydrogen and biofuels along with carbon capture and storage solutions. Achievement of net zero carbon will also require innovations in product and process design and the adoption of circular economy and industrial symbiosis approaches via new business models, enabled as necessary by changes in national and global policies. Additionally, the Governments £4.7B National Productivity Investment Fund recognises the need for raising UK productivity across all industrial sectors to match best international standards. High levels of productivity coupled with low carbon strategies will contribute to creating a transformation of the foundation industry landscape, encouraging strategic retention of the industries in the UK, resilience against global supply chain shocks such as Covid-19 and providing quality jobs and a clean environment. The strategic importance of these industries to UK productivity and environmental targets has been acknowledged by the provision of £66M from the Industrial Strategy Challenge Fund to support a Transforming Foundation Industries cluster. Recognising that the individual sectors will face many common problems and opportunities, the TFI cluster will serve to encourage and facilitate a cross sectoral approach to the major challenges faced. As part of this funding an Academic Network Plus will be formed, to ensure the establishment of a vibrant community of academics and industry that can organise and collaborate to build disciplinary and interdisciplinary solutions to the major challenges. The Network Plus will serve as a basis to ensure that the ongoing £66M TFI programme is rolled out, underpinned by a portfolio of the best available UK interdisciplinary science, and informed by cross sectoral industry participation. Our network, initially drawn from eight UK universities, and over 30 industrial organisations will support the UK foundation industries by engaging with academia, industry, policy makers and non-governmental organisations to identify and address challenges and opportunities to co-develop and adopt transformative technologies, business models and working practices. Our expertise covers all six foundation industries, with relevant knowledge of materials, engineering, bulk chemicals, manufacturing, physical sciences, informatics, economics, circular economy and the arts & humanities. Through our programme of mini-projects, workshops, knowledge transfer, outreach and dissemination, the Network will test concepts and guide the development of innovative outcomes to help transform UK foundation industries. The Network will be inclusive across disciplines, embracing best practice in Knowledge Exchange from the Arts and Humanities, and inclusive of the whole UK academic and industrial communities, enabling access for all to the activity programme and project fund opportunities.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V054627/1
    Funder Contribution: 4,836,820 GBP

    The Transforming the Foundation Industries Challenge has set out the background of the six foundation industries; cement, ceramics, chemicals, glass, metals and paper, which produce 28 Mt pa (75% of all materials in our economy) with a value of £52Bn but also create 10% of UK CO2 emissions. These materials industries are the root of all supply chains providing fundamental products into the industrial sector, often in vertically-integrated fashion. They have a number of common factors: they are water, resource and energy-intensive, often needing high temperature processing; they share processes such as grinding, heating and cooling; they produce high-volume, often pernicious waste streams, including heat; and they have low profit margins, making them vulnerable to energy cost changes and to foreign competition. Our Vision is to build a proactive, multidisciplinary research and practice driven Research and Innovation Hub that optimises the flows of all resources within and between the FIs. The Hub will work with communities where the industries are located to assist the UK in achieving its Net Zero 2050 targets, and transform these industries into modern manufactories which are non-polluting, resource efficient and attractive places to be employed. TransFIRe is a consortium of 20 investigators from 12 institutions, 49 companies and 14 NGO and government organisations related to the sectors, with expertise across the FIs as well as energy mapping, life cycle and sustainability, industrial symbiosis, computer science, AI and digital manufacturing, management, social science and technology transfer. TransFIRe will initially focus on three major challenges: 1 Transferring best practice - applying "Gentani": Across the FIs there are many processes that are similar, e.g. comminution, granulation, drying, cooling, heat exchange, materials transportation and handling. Using the philosophy Gentani (minimum resource needed to carry out a process) this research would benchmark and identify best practices considering resource efficiencies (energy, water etc.) and environmental impacts (dust, emissions etc.) across sectors and share information horizontally. 2 Where there's muck there's brass - creating new materials and process opportunities. Key to the transformation of our Foundation Industries will be development of smart, new materials and processes that enable cheaper, lower-energy and lower-carbon products. Through supporting a combination of fundamental research and focused technology development, the Hub will directly address these needs. For example, all sectors have material waste streams that could be used as raw materials for other sectors in the industrial landscape with little or no further processing. There is great potential to add more value by "upcycling" waste by further processes to develop new materials and alternative by-products from innovative processing technologies with less environmental impact. This requires novel industrial symbioses and relationships, sustainable and circular business models and governance arrangements. 3 Working with communities - co-development of new business and social enterprises. Large volumes of warm air and water are produced across the sectors, providing opportunities for low grade energy capture. Collaboratively with communities around FIs, we will identify the potential for co-located initiatives (district heating, market gardening etc.). This research will highlight issues of equality, diversity and inclusiveness, investigating the potential from societal, environmental, technical, business and governance perspectives. Added value to the project comes from the £3.5 M in-kind support of materials and equipment and use of manufacturing sites for real-life testing as well as a number of linked and aligned PhDs/EngDs from HEIs and partners This in-kind support will offer even greater return on investment and strongly embed the findings and operationalise them within the sector.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y035461/1
    Funder Contribution: 7,420,610 GBP

    The DigitalMetal CDT is born out to meet a national, strategic need for training a new generation of technical leaders able to lead digital transformation of metals industry & its supply chain with the objective of increasing agility, productivity & international competitiveness of the metals industry in the UK. The metals industry is a vital component of the UK's manufacturing economy and makes a significant contribution to key strategic sectors such as construction, aerospace, automotive, energy, defence and medical, directly contributing £20bn to UK GDP, and underpins over £190bn manufacturing GDP. Without a new cadre of leaders in digital technologies, equipped to transform discoveries and breakthroughs in metals and manufacturing (M&M) technologies into products, the UK risks entering another cycle of world-leading innovation but losing the benefits arising from exploitation to more capable and better prepared global competitors. The evolution to Industry 4.0 and Materials 4.0 coupled with unprecedented opportunities of "big data" enable the uptake of artificial intelligence/deep learning (AI/DL) based solutions, making it feasible to implement zero-defects, right first-time manufacturing/zero-waste (ZDM/ZW) concepts and meet the environmental-, sustainable- and societal- challenges. However, to fully take advantage of these opportunities, two critical challenges must be addressed. First, as user-identified problems in the metals industry that spans domains (from discoveries in M&M to their up-scaling and deployment in high volume/value production), urgently needed a new breed of engineers with skills to traverse these domains by going beyond the classical PhD training, i.e., T-model signifying transferable skills and in-depth knowledge in a single domain, to a new Pi-model raining that is underpinned by transferable skills and in-depth knowledge that transverse across domains i.e.,: AI/DL and engineering (M&M) to enable rapid exploitation of discoveries in M&M. Second, while AI/DL domain provides data-driven correlation analysis critical for product performance and defect identification, it is insufficient for root cause analysis (causality). This necessitates training on integrating data-driven with physics-based models of product & production, which is currently lacking in the metals industry. The Midlands region, as the top contributor to UK Gross Value Added through metals and metal products, with world-leading companies, such as Rolls-Royce and Constellium, LEAR and their customers, underpinned through collaborations with the five Midlands universities: Birmingham, Leicester, Loughborough, Nottingham & Warwick, is uniquely positioned to integrate research and industry resources and train a new cadre of engineers & researchers on the Pi-model to address user-needs. Our vision is to train future leaders able to accelerate the exploitation of M&M discoveries using digital technology to enable defect-free, right first-time manufacturing at reduced costs, digitise to decarbonise, and implement fuel switching in metals manufacturing industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X030652/1
    Funder Contribution: 480,738 GBP

    To achieve the UK zero carbon emission target by 2050, alternative energy generation with zero CO2 emission, such as wind, solar, and nuclear energy, is now the target of urgent development to completely replace the use of fossil fuels such as coal, oil, and natural gas. However, the widely used nuclear fission reactors have many issues, for example, the difficulty of nuclear waste treatment and storage and the risk of uncontrolled chain reactions. On the other hand, nuclear fusion energy has many potential advantages, for example, four times higher energy than fission, abundant hydrogen and its isotopes as the fuel, and the short lifespan of the radioactive waste products. However, the development of fusion reactors puts a high demand on materials, as these must withstand high energy levels, high transmutation rates, high temperatures, and high thermomechanical stresses. This brings major material design challenges and requires the design and development of superior materials, along with innovative, facile, manufacturing routes, especially for the first wall structures and breeder blanket of fusion reactors. The structure is not only irradiated by the plasma but also undergoes neutron bombardment from the plasma, as well as high loadings of helium and hydrogen, which causes serious damage to the structural materials. Currently, one of the potential materials designed for the first wall and blanket structures on the fusion reactors is the reduced activation ferritic/martensitic (RAFM) steels, due to the superior thermal conductivity, relatively low thermal expansion, and resistance to radiation-induced swelling and helium embrittlement, as well as the easy commercial process, compared to other materials. However, the properties of these RAFM steels restrict their maximum operating temperature to only 550C, which is much lower than the service temperature of 650C. Moreover, irradiation induces the hardening of these steels at lower service temperatures (250-350C) and embrittlement at high temperatures (450-550C), which also restricted their application. Thus, the 3rd generation oxide dispersion strengthened (ODS) RAFM steels have been developed through nanoparticle and ultra-fine grains, which successfully increase the operating temperature to 650C. However, the limitation of the ODS RAFM steels is the obvious difficulty in powder manufacturing at a sufficient scale to be used in the first wall and blanket structures in fusion reactors. ODS steels also have a problem with a high ductile to the brittle transition temperature. This severely limits their applicability. Thus, there is still an urgent need to develop new RAFM steels for the structure materials on fusion reactors with a service temperature of 650C and easy manufacturing to various scales and structures. In this project, according to ODS RAFM steels, the guiding principles of a fine structure and a high-temperature stable precipitate phase will be used to design new, processable, RAFM steels. For example, the intermetallic precipitates and carbonitrides, which have a lower coarsening rate than carbides at high temperatures, will be the target precipitates; these can be achieved through alloy design with corresponding heat treatment. Moreover, grain refinement can be achieved through the modification of the manufacturing process, for example, by using ausforming, which will produce an extremely high dislocation density. Subsequently, during heat treatment, these dislocations will form nanoscale subgrains through recovery and recrystallization. Thus, the ultimate goal of the research will be to produce new RAFM steels for supply to the spherical tokamak (STEP). This requires advances to allow materials selection between 2023 to 2025 and provision to produce net electricity from fusion in 2040. It will also support the UK to be the world leader in fusion materials design and develop this prominent position through cutting-edge research on groundbreaking material systems

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.