Powered by OpenAIRE graph
Found an issue? Give us feedback

MAST Carbon International Ltd

MAST Carbon International Ltd

10 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/D047943/1
    Funder Contribution: 2,024,720 GBP

    A consortium of teams from 6 universities aims to achieve major advances in a technology that potentially produces electricity directly from sustainable biological materials and air, in devices known as biological fuel cells. These devices are of two main types: in microbial fuel cells micro-organisms convert organic materials into fuels that can be oxidised in electrochemical cells, and in enzymatic fuel cells electricity is produced as a result of the action of an enzyme (a biological catalyst). Fuels that can be used include (1) pure biochemicals such as glucose, (2) hydrogen gas and (3) organic chemicals present in waste water.The Consortium programme involves a unique combination of microbiology, enzymology, electrochemistry, materials science and computational modelling. Key challenges that the Consortium will face include modelling and understanding the interaction of an electrochemical cell and a population of micro-organisms, attaching and optimising appropriate enzymes, developing and studying synthetic assemblies that contain the active site of a natural enzyme, optimising electrode materials for this application, and designing, building and testing novel biological fuel cells.A Biofuel Cells Industrial Club is to be formed, with industrial partners active in water management, porous materials, microbiology, biological catalysis and fuel cell technology. The programme and its outcomes will be significant steps towards producing electricity from materials and techniques originating in the life sciences. The technology is likely to be perceived as greener than use of solely chemical and engineering approaches, and there is considerable potential for spin off in changed technologies (e.g. cost reductions, reduction in the need for precious metals, biological catalysts for production of hydrogen by electrolysis).

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G00434X/1
    Funder Contribution: 926,104 GBP

    Laccase is a protein excreted by white-rot fungi that works as well or better than precious metals at catalysing the reduction of oxygen to water. This chemical reaction is central to almost all low-temperature fuel cells that work in air.Fuel cells are devices that convert chemical energy from a fuel like methanol or hydrogen directly and efficiently into electrical energy. In contrast, when fuel is burned in a generator, the fuel's chemical energy is converted into thermal energy (hot gases) and mechanical energy (moving pistons) before it becomes electrical energy. Each energy conversion step has losses from heat loss and friction and from inescapable inefficiencies governed by the laws of thermodynamics; fuel cells, on the other hand, can have greater efficiencies by bypassing these intermediate stages.In most fuel cells the oxygen reduction reaction takes place on the surface of particles of expensive precious metals (usually platinum). Laccase catalyses the same reaction using only four copper atoms per enzyme molecule. Laccase catalysis is more energetically efficient, nearly as rapid, and more selective against catalyst-killing gaseous impurities.There are two key problems with using laccase in fuel cells. The first is stability: enzymes are complex and often fragile biological polymers that need to be properly oriented to work in a fuel cell. However, I have developed a technique that extends the working lifetime of laccase in a fuel cell from hours to several months. The second is the amount of electric current that is generated from a given area or volume. The platinum surface can host thousands of reactions at once while the each laccase molecule can only react one oxygen molecule at a time. To compensate for this, I am proposing introducing laccase into porous, three-dimensional electrode materials, essentially taking laccase from working on a open plain and moving it to a multi-storey office complex. For laccase to function as efficiently as possible, it needs to have its reaction needs met: a good supply of oxygen (fast gas diffusion), a constant concentration of hydrogen ions (buffered pH), and a well-connected electrical supply. Designing and building this infrastructure requires a thorough understanding of the interactions between the enzyme's surface and the surface to which it is attached and careful control of how material flows through the pores. Extending the surfaces into the third dimension lets us make more compact power sources that are suitable, for example, for small electronics like portable music players and mobile phones.Most of the surface area of porous materials is on the inside of the structure and probing an interior surface is always a challenge. I will use small gaseous molecules explore the interior, high-energy beams of metal ions to cut open the structure, high-resolution electron microscopy to examine it, and electronic and spectroscopic methods that can interrogate the interaction between the enzyme and a surface.This work is supported by an active, ongoing collaboration with experts in fungal biology. They are currently working on understanding the molecular biology behind laccase, first to mass produce the enzyme, followed by genetic engineering to change laccase's catalytic behaviour, selectivity and surface interactions.In addition to portable fuel cells that work at ambient temperatures, we may also discover more efficient, less expensive catalysts and learn how enzymes are able to carry out the oxygen reduction reaction with copper, a common metal from the first row of the transition metals, rather than platinum, a rare and expensive metal from the third row.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G03768X/1
    Funder Contribution: 7,492,220 GBP

    The Departments of Chemistry (Chem) and Chemical Engineering (Chem Eng) at the University of Bath propose a Doctoral Training Centre (DTC) in Sustainable Chemical Technologies. The 6.9m requested from the EPSRC will be supplemented by 6.0m from the University and a 3.0m industrial contribution to fund a DTC operating at the interface of Chem and Chem Eng. The DTC will place fundamental concepts of sustainability at the core of a broad spectrum of research and training in applied chemical sciences. A dynamic, multidisciplinary research and training environment (the combined current EPSRC portfolio for the two departments is 19.9m) will underpin transformative research and training in Sustainable Chemical Technologies. This will respond to a national and global need for highly skilled and talented scientists and engineers in the area. All students will receive foundation training to supplement their undergraduate knowledge, as well as training in Sustainable Chemical Technologies and transferable skills. They will all conduct high quality and challenging research within the Sustainable Chemical Technologies theme directed by joint Chem and Chem Eng supervisors. The broad research themes encompass the areas of; Renewable Resources, Clean Energy, Clean Processes, Pharmaceuticals and Wellbeing, and Life Cycle Impact Reduction. Participation from key industry partners will address stakeholder needs, and partner institutions in the USA and Germany will provide world-leading international input, along with exciting opportunities for student placements. Detailed management plans have been developed in order to facilitate the smooth running of the centre and to enable excellence in the training and research aspects of the proposal. The Doctoral Training Centre will be supported by the creation of physical and virtual laboratories for the students.This 16m initiative has attracted strong and influential support: I strongly support the objectives you describe...the center is the right idea at the right time. Good luck! (Prof. George Whitesides, Harvard); The proposed initiative...should enable significant impacts to be made in this vital area. (joint letter signed by six Chief Executives of key stakeholders, including David Brown, IChemE and Richard Pike, RSC).

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R023662/1
    Funder Contribution: 1,832,220 GBP

    The proposal will develop one of the three UK energy materials hubs, which will carry out cutting edge research in close collaboration with industry in the development of materials up to demonstrator level (pre-commercial) devices. The hub will also have a major role in networking, training, educating in energy materials and devices across UK groups and industry, and will link-up and compliment existing energy related networks and groups to benefit the UK. The "JUICED" Hub [Joint University-Industry Consortium for Energy (Materials) and Devices Hub] will focus its research on nano-enabled energy materials (ceramic materials on a scale of a billionth of a meter wide). Energy materials will be made and developed in applications, such as high performance batteries and similar energy storage devices for automotive, grid or consumer device applications, low cost materials for electrolysers (which use electrical energy to split water into oxygen and hydrogen fuel), fuel cells [devices which take chemical energy and can (sometimes) reversibly convert it to electrical energy]. Other energy materials of interest are materials which can scavenge low grade heat or energy and convert it into electrical energy or materials which can help store, transfer or regulate thermal energy. The novelty in the hub's approach is that it will be able to considerably accelerate the development of new sustainable materials ; (i) Use high throughput synthesis (making a large number of samples quickly in parallel or in series) and in many cases, computational methods (use of computers to simulate and understand and predict materials properties) and appropriate (rapid) screening of materials properties, which will identify lead materials in each application area (ii) Laboratory-scale synthesis of the highest performing samples from above and testing to identify materials for larger scale syntheses (iii) pilot scale syntheses and tests on samples on pre-commercial demonstrator devices, (in collaboration with industry or end users with a strong emphasis on replacing precious or unsustainable metals such as Pt, Ir, Ru, Pb, etc.). How the research aligns with the Industrial Strategy Challenge Fund objectives; The proposed energy hub aligns well to the Industrial Strategy Challenge Fund objectives as follows; the interactions with the industrial consortium in the hub will work with UK industry and accelerate discoveries of new advanced functional materials which will increase UK businesses' investment in R&D and improved R&D capability and capacity. The research in the hub, which covers aspects of materials, testing and characterisation as well as scale-up will lead to an increase multi- and interdisciplinary research around the challenge area of "clean and flexible energy", particularly in the design, development and manufacture of energy storage devices (batteries or similar devices) for the electrification of vehicles to support the business opportunities presented by the low carbon economy and tackle air pollution (e.g. new sustainable catalysts for oxygen evolution and reduction which can also be used in next generation batteries). Other areas that the hub covers that are which are linked to the Industrial Strategy Challenge Fund include "Manufacturing and Materials of the Future" (develop new, affordable, materials for advanced manufacturing sectors). Some of these materials are important components in devices which have applications also in Satellites and space technologies. The JUICED hub includes a number of scale-up and demonstrator activities and therefore this will lead to increased business-academic engagement on innovation activities relating to the same aforementioned challenge areas. The JUICED energy hub will include a number of larger and smaller companies and it will reach out to even more potential companies in the UK (SMEs and larger companies) with its workshops which will publicise capabilities.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G00434X/2
    Funder Contribution: 429,910 GBP

    Laccase is a protein excreted by white-rot fungi that works as well or better than precious metals at catalysing the reduction of oxygen to water. This chemical reaction is central to almost all low-temperature fuel cells that work in air.Fuel cells are devices that convert chemical energy from a fuel like methanol or hydrogen directly and efficiently into electrical energy. In contrast, when fuel is burned in a generator, the fuel's chemical energy is converted into thermal energy (hot gases) and mechanical energy (moving pistons) before it becomes electrical energy. Each energy conversion step has losses from heat loss and friction and from inescapable inefficiencies governed by the laws of thermodynamics; fuel cells, on the other hand, can have greater efficiencies by bypassing these intermediate stages.In most fuel cells the oxygen reduction reaction takes place on the surface of particles of expensive precious metals (usually platinum). Laccase catalyses the same reaction using only four copper atoms per enzyme molecule. Laccase catalysis is more energetically efficient, nearly as rapid, and more selective against catalyst-killing gaseous impurities.There are two key problems with using laccase in fuel cells. The first is stability: enzymes are complex and often fragile biological polymers that need to be properly oriented to work in a fuel cell. However, I have developed a technique that extends the working lifetime of laccase in a fuel cell from hours to several months. The second is the amount of electric current that is generated from a given area or volume. The platinum surface can host thousands of reactions at once while the each laccase molecule can only react one oxygen molecule at a time. To compensate for this, I am proposing introducing laccase into porous, three-dimensional electrode materials, essentially taking laccase from working on a open plain and moving it to a multi-storey office complex. For laccase to function as efficiently as possible, it needs to have its reaction needs met: a good supply of oxygen (fast gas diffusion), a constant concentration of hydrogen ions (buffered pH), and a well-connected electrical supply. Designing and building this infrastructure requires a thorough understanding of the interactions between the enzyme's surface and the surface to which it is attached and careful control of how material flows through the pores. Extending the surfaces into the third dimension lets us make more compact power sources that are suitable, for example, for small electronics like portable music players and mobile phones.Most of the surface area of porous materials is on the inside of the structure and probing an interior surface is always a challenge. I will use small gaseous molecules explore the interior, high-energy beams of metal ions to cut open the structure, high-resolution electron microscopy to examine it, and electronic and spectroscopic methods that can interrogate the interaction between the enzyme and a surface.This work is supported by an active, ongoing collaboration with experts in fungal biology. They are currently working on understanding the molecular biology behind laccase, first to mass produce the enzyme, followed by genetic engineering to change laccase's catalytic behaviour, selectivity and surface interactions.In addition to portable fuel cells that work at ambient temperatures, we may also discover more efficient, less expensive catalysts and learn how enzymes are able to carry out the oxygen reduction reaction with copper, a common metal from the first row of the transition metals, rather than platinum, a rare and expensive metal from the third row.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.