
The Urban Heat Island (UHI) is a direct consequence of anthropogenic influences on our local climate. Many studies have been devoted to the study of UHI extent and magnitude, as well as the impacts increased urban temperatures have on meteorology, climatology, human health and society. Although the UHI phenomenon is well documented and studies have increased our understanding, the basic measurement of temperatures across urban areas remains very limited. Birmingham is the UK's second most populous city, with a population in excess of 1 million people and a well defined UHI. However, Birmingham has only two climate stations which when linked with the complex heterogeneous urban morphology results in extremely poor data coverage. The overall aim of this project is to provide a demonstration sensor network designed to measure air temperature across the Birmingham conurbation. This aim will be met by the following objectives: 1. Instrument Birmingham via nested arrays of sensors comprising of the following: a Coarse array of 29 weather stations across Birmingham located in secure primary electrical substations b Wide area array consisting of 131 Wi-Fi air and humidity sensors located at schools across the conurbation (1 per ONS Super Output Area) c Fine scale array covering the Central Business District and consisting of approx. 50 sensors per square kilometre 2. Analyse, process and make available the data sets to the user community. Data will be made available for analysis on web-based GIS platforms to inform decision-makers and the wider user community including schools and colleges. 3. To instigate knowledge exchange with industry and decision-makers. The proposed sensor network would provide an unparalleled data set that would benefit many users including project partners. Users are at the heart of this proposal. Academic investigators on this project already have two established Knowledge Transfer Partnerships with project partners who will directly benefit form the data collected during this project: 1. KTP with EON Central Networks to investigate power-grid/temperature dependency in Birmingham (TSB/NERC funded) 2. KTP with Birmingham City Council to investigate environmental risk (e.g. Urban Heat and Flooding) at a neighbourhood scale (TSB/NERC funded) Both these partners are committed to this project and are crucial to the success of establishing the network. EON Central Networks will provide access to the secure sites across the conurbation where as Birmingham City Council will be instrumental in the installation of the sensors on council owned lighting columns. The majority of the equipment will also be procured from project partners on specially negotiated deals. The University has recently completed a KTP with Campbell Scientific Ltd who will be responsible for the coarse array of weather stations where as Aginova Inc. are the technical partners responsible for the Wi-Fi sensors. This is an ambitious project which seeks to provide three different sensor networks at three different scales. A unique selling point of this proposal is the strengthening of already mature partnerships, where as collaboration with SI-KTN will further ensure future engagement activities with new partners. In summary, data from this project will be instrumental in answering key research questions currently under investigation such as what is the impact of the current and future climate on the people and infrastructure of a major conurbation.
This proposal focuses on the electricity network of 2050. In the move to a decarbonised energy network the heat and transport sectors will be fully integrated into the electricity system. Therefore, the grand challenge in energy networks is to deliver the fundamental changes in the electrical power system that will support this transition, without being constrained by the current infrastructure, operational rules, market structure, regulations, and design guidelines. The drivers that will shape the 2050 electricity network 2050 are numerous: increasing energy prices; increased variability in the availability of generation; reduced system inertia; increased utilisation due to growth of loads such as electric vehicles and heat pumps; electric vehicles as randomly roving loads and energy storage; increased levels of distributed generation; more diverse range of energy sources contributing to electricity generation; and increased customer participation. These changes mean that the energy networks of the future will be far more difficult to manage and design than those of today, for technical, social and commercial reasons. In order to cater for this complexity, future energy networks must be organised to provide increased flexibility and controllability through the provision of appropriate real time decision-making techniques. These techniques must coordinate the simultaneous operation of a large number of diverse components and functions, including storage devices, demand side actions, network topology, data management, electricity markets, electric vehicle charging regimes, dynamic ratings systems, distributed generation, network power flow management, fault level management, supply restoration and fuel choice. Additionally, future flexible grids will present many more options for energy trading philosophies and investment decisions. The risks and implications associated with these decisions and the real-time control of the networks will be harder to identify and quantify due to the increased uncertainty and complexity.We propose the design of an autonomic power system for 2050 as the grand challenge to be investigated. This draws upon the computer science community's vision of autonomic computing and extends it into the electricity network. The concept is based on biological autonomic systems that set high-level goals but delegate the decision making on how to achieve them to the lower level intelligence. No centralised control is evident, and behaviour often emerges from low-level interactions. This allows highly complex systems to achieve real-time and just-in-time optimisation of operations. We believe that this approach will be required to manage the complex trans-national power system of 2050 with many millions of active devices. The autonomic power system will be self-configuring, self-healing, self-optimising and self-protecting. This proposal is not focused on the application of established autonomic computing techniques to power systems (as they don't exist) but the design of an autonomic power system, which relies on distributed intelligence and localised goal setting. This is a significant step forward from the current Smart Grid vision and roadmaps. The autonomic power system is a completely integrated and distributed control system which self-manages and optimises all network operational decisions in real time. To deliver this, fundamental research is required to determine the level of distributed control achievable (or the balance between distributed, centralised, and hierarchical controls) and its impact on investment decisions, resilience, risk and control of a transnational interconnected electricity network. The research within the programme is ambitious and challenges many current philosophies and design approaches. It is also multi-disciplinary, and will foster cross-fertilisation between power systems, complexity science, computer science, mathematics, economics and social sciences.
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Climate change is a problem that threatens the world and is caused by the release of greenhouse gas emissions, such as Carbon Dioxide from burning fuels like gas and oil. Our dwellings in the UK consume 30% of the country's total energy demand and so that we can reduce the environmental impact of our lifestyles and create greater energy security by consuming less, the UK Government has laid out a road map of measures that will deliver a zero carbon (or as close as possible) housing stock by 2050, affecting all homes in the UK.A key step on the way to 2050 is the installation of so-called 'smart-meters', which the Government has decided will be rolled out to every house in the UK by 2030. These meters will deliver much greater information to both energy providers and householders. These meters will mean more accurate and transparent billing and should stimulate a more competitive energy market, which would benefit consumers. This greater level of information about how we use energy in and around the home can help us understand where we are wasteful and can tolerate a reduction in consumption and when and where changing our habits and/or lifestyle is not acceptable.What is not understood fully is the relationship between the householder and their preferences and tolerances to change and the sorts of pressures and constraints placed on the energy providers for energy production. Today we enjoy the luxury of having as much energy as we want on demand 24hours a day, but increased reliance on renewable sources, such as wind turbines, combined with a need to reduce our consumption as a nation is likely to mean that more flexible supply and generation systems will become more common and this will have implications for how we use energy in the home. We need to find new ways to help us understand how and where we can reduce our consumption without unacceptable impact on our lifestyles. One way to do this is by understanding how everyday practices in the home (including the use of digital media) result in the consumption of energy and how these practices may change in the future because of societal trends ( e.g. the aging population, remote working, broadband in every home) and then to see how this information can offer opportunities to develop products and services that are attractive to the householder and that have a real impact on energy consumption in the home.The challenges are both technological and sociological and so this research brings together academic experts in the fields of social science, user interface design, product design, building modelling and energy consumption, systems engineering and computer science with householders, energy providers and business to focus on the issue of using digital technology for reducing energy demand in the home. This team contends that in order to develop ways in which householders can reduce their energy consumption significantly, with relatively little effort on their part, the needs of the user must be understood in the wider context of a changing energy landscape and that this can lead to the development of new ideas that can be developed into business opportunities that benefit the UK economy.
The efficiency, safety and reliability of a wide range of engineering systems in the energy sector rely strongly on the performance of their structural components. Increasing energy efficiencies, achieved by maximising operating temperatures, will drive down CO2 emissions and is therefore essential to meet stringent legislation and the UK's and international short and long-term energy goals. Engineering components operate under adverse conditions (stress, temperature and harsh environments) causing their degradation and failure by deformation and fracture processes. Existing energy facilities are aging beyond design life and require life extension to secure short-term energy supplies. Reliable component lifetime assessment is therefore vital to ensure safe operation. New build nuclear reactors will soon be developed and future reactors designed for very high temperature operation and superior performance. Plans are also advanced for the construction of the next generation of conventional power stations with excess operating temperatures and efficiencies. Opportunities are now emerging to exploit a novel collection of innovative techniques, at micro and macro length scales, to obtain a fundamental understanding of material failure mechanisms. These will enable advanced materials and component designs with predictable in-service behaviour, which are crucial to innovation in the energy sector and the key for overcoming the outstanding challenges.Emerging experimental techniques can now reveal the processes, and quantify the extent of deformation and damage in a material as it occurs. High-energy X-ray tomography measurements will give detailed quantitative 3D volumetric insights of damage development, coalescence and failure mechanisms in the bulk of specimens at micro-length scales, during deformation under stress at temperature. In addition, complimentary non-destructive tools will be innovated for practical monitoring of large scale component degradation. At a range of length scales, a digital image correlation technique will be used to measure 3D surface strains on various geometries, and will provide evidence of the influence of defects and material inhomogeneities due to welding processes on strain fields and their evolution with time.High performance computing now facilitates advanced models to simulate material behaviour and structural components' response under various operating conditions. Experimental results will provide the basis for validated mechanistic models of material deformation and failure behaviour, which will be developed and incorporated into 3D computational models that can also include various regions of inhomogeneous material behaviour. This novel collection of advanced experimental techniques, combined with the verified computational models, will provide new powerful tools that are essential to understand and predict component failure, advance designs and optimise their operation.Initially, power plant steels will be examined. However, the methodologies developed can be extended to a wide range of materials relevant to e.g. aerospace, heat and power generation, marine and chemical technologies. The outcomes will lead to methods for component on-line monitoring, predictive multi-scale modelling of materials' initial and through-life properties and the development of accurate assessment procedures for component lifetime predictions that leads to the required plant life extension. Social and economical benefits include minimised environmental impacts, secure supplies, reduced maintenance costs and increased safety. The close collaboration with industry (including partners British/EDF Energy and E.ON) will provide an effective knowledge transfer mechanism between industry and academia, ensure industrial relevance and provide inspiration to a new generation of researchers. This fundamental, timely research is therefore valuable across industrial sectors in addition to the scientific community.