Powered by OpenAIRE graph
Found an issue? Give us feedback

EXALOS AG

Country: Switzerland
4 Projects, page 1 of 1
  • Funder: European Commission Project Code: 317744
    more_vert
  • Funder: European Commission Project Code: 611132
    more_vert
  • Funder: European Commission Project Code: 602812
    more_vert
  • Funder: European Commission Project Code: 688173
    Overall Budget: 4,897,450 EURFunder Contribution: 3,997,450 EUR

    Silicon photonics is expected to leverage-off many of the advances made in CMOS electronics. International R&D efforts in this field have so far been mainly focused on the silicon-on-insulator (SOI) photonic integrated circuit (PIC) technology platform because it is predestined for datacom, high-performance computing and telecom applications. However, SOI based integrated optical waveguides cannot be used for the VIS/NIR <1.1µm wavelength region, which is important for life sciences and health related applications and, thus, offers a huge potential for PIC technology. To this end, a novel CMOS compatible low-loss silicon nitride waveguide based PIC technology platform will be developed in OCTCHIP and directly applied to the a strong business case in the field of optical coherence tomography (OCT) for ophthalmology. OCT is a revolutionizing in-vivo 3D imaging technique for non-invasive optical biopsy addressing medical needs with early diagnosis and reduction of healthcare cost. OCT has proven its value primarily in ophthalmology and cardiology but recently also in a variety of other medical fields. However, wide adoption has not taken place due to size and cost limitations as well as non-existence of miniaturized devices. The PIC technology developed in OCTCHIP will make a new generation of OCT systems possible with step-changes in size and cost beyond state-of-the-art. The monolithic integration of silicon nitride optical waveguides, silicon photodiodes and electronics combined with the hybrid integration of a III-V laser source will enable a compact, low-cost and maintenance free solution. OCTCHIP will contribute to radically transform OCT towards widespread adoption in point-of-care diagnostics for the early diagnosis of retinal pathologies, which are leading causes for blindness. The endeavor is strongly driven by company partners with strong expertise in the fields of silicon foundry process technology, miniaturized laser sources, and OCT system integration.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.