
The overarching objective of OneSTOP is to pioneer an innovative and joined-up approach to biosecurity for terrestrial invasive alien species, strengthening the interconnections between animal, plant, human and environmental health. OneSTOP aims to harness current technologies and citizen science, while overcoming challenges posed by dispersed and fragmentary processes, policies, and knowledge, to deliver methods for identification, early detection and surveillance of invasive alien species. OneSTOP aims to achieve transformative results to minimise the introduction, establishment and spread of invasive alien species by integrating cutting-edge detection methods, underpinned by prioritisation and robust models, alongside stakeholder engagement to inform harmonised policies and facilitate knowledge exchange. The outcomes will be relevant for invasive alien species policy, noting the importance of enhancing collaboration and coordination across local, national, and regional scales, recognising that geographic boundaries do not confine the impact of these species. By adopting a holistic and interconnected approach, OneSTOP seeks to establish a strategy to achieve rapid and transformative progress in detecting, eradicating and controlling invasive alien animals and plants, ultimately contributing to a more secure and resilient environment. Throughout, OneSTOP is based upon the strategic actions recommended for integrated governance of biological invasions in the recently published IPBES Thematic assessment report on invasive alien species and their control (IPBES 2023).
This project will deliver a new class of metamaterials whose functionality can be controlled by external magnetic fields. The materials consist of micromotors, comprising an anisotropically “hard” and “soft” ferromagnetic particle pair embedded in a polymer matrix, and promise wide-ranging technological applications. The project, involves 5 partners with expertise in experimental and theoretical physics, biological science and technology. Building upon a detailed analysis of the physical properties of the individual motors, and their dependency on their magnetic and material properties, the team will develop methods for incorporating the motors into elastic membranes (MEMs). We shall analyse the mechanical and optical properties of these constructs and the ways in which they can be modulated by the external magnetic fields. These novel properties will then be used to produce prototype devices: • Pumps for fluids and tuneable filters for dissolved solutes, operating down to microscopic length scales and based on magnetically driven membrane deformation and changes in internal pore structure. • Tuneable optical devices such as lenses and filters based on magnetic strain-induced changes in the optical and photonic properties of the constructs. • Substrates for biotechnology, tissue engineering and regenerative medicine. These devices will be based on our ability to apply to cells in culture the patterns of temporally and spatially varying strain fields to which they are exposed in vivo and which maintain their phenotype and metabolic activity. The prototypes will find immediate applications in expanding areas of technology ranging from lab-on-a-chip systems to biomedical implants. They will also help the team to develop a thorough understanding of the novel emergent properties of the MEMs leading, in turn to many other applications.
The aim of MagElastic is to turn into a “ready for market” technology an innovation based on magnetoelastic micromotors, which was recently developed by FET-OPEN consortium ABIOMATER. It was demonstrated that such micromotors can function as microfluidic pumps, valves and stirrers, to manipulate liquids at microscopic scale. These properties show high potential in point-of-care (POC) diagnostics, since they allow for minimal volume of sample extraction, instantaneous application, and no reliance on the medical expertise or laboratory tools. The main objective of MagElastic is to set up a start-up/spin-off company for commercialising a blood plasma separation component which will enable to produce a range of point-of-care devices for diagnosis of many known illnesses. With only a prick of blood such a component can help saving a significant amount of time and costs, which are currently being lost in the necessity of involving specialised equipment and staff support to extract blood plasma. Because of it’s time efficiency, in some cases (such as Sepsis described below), such devices will allow to save lives. MagElastic will bring the current technology from TRL5/6 to TRL7 by engaging with early adopters that will test the new device in operational environment. Moreover MagElastic will pave the way for the commercialisation of the new device by meeting with potential customers, clients and commercial partners and facilitating access to potential investors. During the project, the University of Exeter and Platform Kinetics, owners of the results of the undergoing FET-OPEN project, will be supported by META Group, an experienced partner in exploitation of research results and access to investors.