Powered by OpenAIRE graph
Found an issue? Give us feedback

Intelligent Energy Ltd

Intelligent Energy Ltd

15 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/L015749/1
    Funder Contribution: 4,486,480 GBP

    The CDT proposal 'Fuel Cells and their Fuels - Clean Power for the 21st Century' is a focused and structured programme to train >52 students within 9 years in basic principles of the subject and guide them in conducting their PhD theses. This initiative answers the need for developing the human resources well before the demand for trained and experienced engineering and scientific staff begins to strongly increase towards the end of this decade. Market introduction of fuel cell products is expected from 2015 and the requirement for effort in developing robust and cost effective products will grow in parallel with market entry. The consortium consists of the Universities of Birmingham (lead), Nottingham, Loughborough, Imperial College and University College of London. Ulster University is added as a partner in developing teaching modules. The six Centre directors and the 60+ supervisor group have an excellent background of scientific and teaching expertise and are well established in national and international projects and Fuel Cell, Hydrogen and other fuel processing research and development. The Centre programme consists of seven compulsory taught modules worth 70 credit points, covering the four basic introduction modules to Fuel Cell and Hydrogen technologies and one on Safety issues, plus two business-oriented modules which were designed according to suggestions from industry partners. Further - optional - modules worth 50 credits cover the more specialised aspects of Fuel Cell and fuel processing technologies, but also include socio-economic topics and further modules on business skills that are invaluable in preparing students for their careers in industry. The programme covers the following topics out of which the individual students will select their area of specialisation: - electrochemistry, modelling, catalysis; - materials and components for low temperature fuel cells (PEFC, 80 and 120 -130 degC), and for high temperature fuel cells (SOFC) operating at 500 to 800 degC; - design, components, optimisation and control for low and high temperature fuel cell systems; including direct use of hydrocarbons in fuel cells, fuel processing and handling of fuel impurities; integration of hydrogen systems including hybrid fuel-cell-battery and gas turbine systems; optimisation, control design and modelling; integration of renewable energies into energy systems using hydrogen as a stabilising vector; - hydrogen production from fossil fuels and carbon-neutral feedstock, biological processes, and by photochemistry; hydrogen storage, and purification; development of low and high temperature electrolysers; - analysis of degradation phenomena at various scales (nano-scale in functional layers up to systems level), including the development of accelerated testing procedures; - socio-economic and cross-cutting issues: public health, public acceptance, economics, market introduction; system studies on the benefits of FCH technologies to national and international energy supply. The training programme can build on the vast investments made by the participating universities in the past and facilitated by EPSRC, EU, industry and private funds. The laboratory infrastructure is up to date and fully enables the work of the student cohort. Industry funding is used to complement the EPSRC funding and add studentships on top of the envisaged 52 placements. The Centre will emphasise the importance of networking and exchange of information across the scientific and engineering field and thus interacts strongly with the EPSRC-SUPERGEN Hub in Fuel Cells and Hydrogen, thus integrating the other UK universities active in this research area, and also encourage exchanges with other European and international training initiatives. The modules will be accessible to professionals from the interacting industry in order to foster exchange of students with their peers in industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M023508/1
    Funder Contribution: 1,004,390 GBP

    The goal of this Korea-UK research initiative is to address Research theme 1 (Innovative concepts from Electrodes to stack) of the EPSRC-KETEP Call for Collaborative Research with Korea on Fuel Cell Technologies. The proposal also covers some aspects of Research theme 2 (Predictive control for performance and degradation mitigation). Hence, this research is associated with improving the lifetime and performance of polymer electrolyte fuel cells. Within this project we will develop new corrosion resistant catalyst supports and catalyse those supports utilising a new catalysis technique. We will also examine the development of porous bipolar plates and see how we can integrate those bipolar plates and catalysts within a fuel cell. We will trial the materials in test stacks and look at the performance and longevity of these new materials. Parallel to this work, we will use state of the art x-ray tomography and other imaging techniques to assess the performance of the materials under real operating conditions. Information from these tests will allow us to develop a methodological framework to simulate the performance of the fuel cells. This framework will then be used to build more efficient control strategies for our higher performance fuel cell systems. We will also build a strong and long-lasting collaborative framework between Korea and the UK for both academic research and commercial trade. The project will benefit from the complementary strengths of the Korean and UK PEFC programmes, and represents a significant international activity in fuel cell research that includes a focus on the challenging issues of cost reduction and performance enhancement. The project will have particularly high impact and added value due to a strong personnel exchange programme with researchers spending several months in each other's labs; highly relevant industrial collaboration; and links with the H2FC Supergen. We have strong support from industrial companies in both the UK and Korea who will support our goals of developing new catalysts for fuel cells (Amalyst - UK, and RTX Corporation - Korea), new corrosion resistant porous bipolar plates (NPL-UK; Hyundai Hysco and Hankook tire (Korea)), and fuel cell and system integrators (Arcola Energy and Intelligent Energy (UK)).

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I038586/1
    Funder Contribution: 3,012,030 GBP

    Hybrid electric vehicles (HEV) are far more complex than conventional vehicles. There are numerous challenges facing the engineer to optimise the design and choice of system components as well as their control systems. At the component level there is a need to obtain a better understanding of the basic science/physics of new subsystems together with issues of their interconnectivity and overall performance at the system level. The notion of purpose driven models requires models of differing levels of fidelity, e.g. control, diagnostics and prognostics. Whatever the objective of these models, they will differ from detailed models which will provide a greater insight and understanding at the component level. Thus there is a need to develop a systematic approach resulting in a set of guidelines and tools which will be of immense value to the design engineer in terms of best practice. The Fundamental Understanding of Technologies for Ultra Reduced Emission Vehicles (FUTURE) consortium will address the above need for developing tools and methodologies. A systematic and unified approach towards component level modelling will be developed, underpinned by a better understanding of the fundamental science of the essential components of a FUTURE hybrid electrical vehicle. The essential components will include both energy storage devices (fuel cells, batteries and ultra-capacitors) and energy conversion devices (electrical machine drives and power electronics). Detailed mathematical models will be validated against experimental data over their full range of operation, including the extreme limits of performance. Reduced order lumped parameter models are then to be derived and verified against these validated models, with the level of fidelity being defined by the purpose for which the model is to be employed. The work will be carried out via three inter-linked work packages, each having two sub-work packages. WP1 will address the detailed component modelling for the energy storage devices, WP2 will address the detailed component modelling for the energy conversion devices and WP3 will address reduced order modelling and control optimisation. The tasks will be carried out iteratively from initial component level models from WP1 and WP2 to WP3, subsequent reduced order models developed and verified against initial models, and banks of linear-time invariant models developed for piecewise control optimisation. Additionally, models of higher fidelity are to be obtained for the purpose of on-line diagnosis. The higher fidelity models will be able to capture the transient conditions which may contain information on the known failure modes. In addition to optimising the utility of healthy components in their normal operating ranges, to ensure maximum efficiency and reduced costs, further optimisation, particularly at the limits of performance where component stress applied in a controlled manner is considered to be potentially beneficial, the impact of ageing and degradation is to be assessed. Methodologies for prognostics developed in other industry sectors, e.g. aerospace, nuclear, will be reviewed for potential application and/or tailoring for purpose. Models for continuous component monitoring for the purpose of prognosis will differ from those for control and diagnosis, and it is envisaged that other non-parametric feature-based models and techniques for quantification of component life linked to particular use-case scenarios will be required to be derived. All members of the consortia have specific individual roles as well as cross-discipline roles and interconnected collaborative activities. The multi-disciplinary nature of the proposed team will ensure that the outputs and outcomes of this consortia working in close collaboration with an Industrial Advisory Committee will deliver research solutions to the HEV issues identified.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G060991/1
    Funder Contribution: 36,467 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023909/1
    Funder Contribution: 6,857,580 GBP

    The global hydrogen generation market is valued at $115.25 billion in 2017 and is projected to grow to $154.74 billion by 2022 [Global Outlook & Trends for Hydrogen, IEA, 2017]. We are witnessing significant market opportunities emerging for hydrogen technologies today. New and existing hydrogen technology developments and market activities are projected to intensify over the coming decade. Sustainable hydrogen solutions are a key pathway for decarbonising transport, heat and power generation sectors. Common challenges to sustainable hydrogen being adopted across these sectors are: - Cost reduction - Safety - Systems level and multisectoral innovations - Managing change Over the next decade innovative solutions are needed to tackle the above challenges, but it will be impossible without a dedicated mechanism to train doctoral Energy Innovation Leaders. These leaders should have a firm grasp of the technology from scientific fundamentals through to applied engineering and a solid understanding of the techno-economic barriers and an appreciation of the societal issues that will impact on the translation of disruptive technologies from research labs through to market. This goes beyond being multidisciplinary, but is a transdisciplinary training, reflecting the translation steps from understanding market driven needs, planning and conducting appropriate basic and applied research to products/solutions/system development through to successful market penetration. This is delivered by a cohort training approach through the cross fertilisation of ideas of a cohort with a diverse background, peer-demonstration of the value of research across a diverse range of stakeholder-led projects, thus facilitating a peer-to-peer transdisciplinary learning culture. The SusHy Consortium, led by Gavin Walker, continues a long running and highly successful collaboration in hydrogen research between the Universities of Nottingham, Loughborough, and Birmingham (UoN, LU, UoB) which started over a decade ago with the Midlands Energy Consortium. The Midlands Energy Graduate School spawned two successful CDTs (Hydrogen, Fuel Cells and their Applications and the current Fuel Cells and their Fuels). The current proposal for a CDT in Sustainable Hydrogen brings together the world leading expertise in hydrogen generation, purification, sensors/monitoring, and storage, along with whole systems issues (resilience engineering, business economic models and life cycle analysis) which exist across the three Universities. A gap in the consortium expertise is in the research field of hydrogen safety and we identified the internationally-renowned Hydrogen Safety Engineering and Research Centre (HySAFER) at Ulster University (UU) as the right partner to deliver on this key aspect. This is the first broad collaboration in the world seeking to investigate, train researchers and produce leaders in Sustainable Hydrogen. Stakeholder Partnerships. A key strength of this CDT is the active involvement of the Stakeholders in co-creation of the training programme which is reciprocated in the value with which the Stakeholders view of the CDT. This shared vision of a training partnership between the Universities and Stakeholders will lead to the smooth function of the CDT with not just a high-quality training programme, but a programme that is tailored to the sector needs for high-quality, industry-ready doctoral Energy Innovation Leaders. The valued CDT-stakeholder partnership will also be a significant appeal to candidates interested in energy-related PhDs and will be used to help market the CDT programme to a diverse talent pool.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.