
The main objective of HyInHeat is the integration of hydrogen as fuel for high temperature heating processes in the energy intensive industries. While some of the equipment is already presented as hydrogen-ready, the integration of hydrogen combustion in heating processes still needs adoption and redesign of infrastructure, equipment and the process itself. HyInHeat realizes the implementation of efficient hydrogen combustion systems to decarbonize heating and melting processes of the aluminium and steel sectors, covering almost their complete process chains. To reach this overarching objective within the project, furnace and equipment like burners or measurement and control technology but also infrastructure is redesigned, modified and implemented in eight demonstrators at technical centres and industrial plants. Besides hydrogen-air heating, oxygen-enriched combustion and hydrogen-oxyfuel heating is implemented to boost energy efficiency and to decrease the future hydrogen fuel demand of the processes. This might result in a total redesign of the heating process itself which will be supported by simulation methods enhancing digitalisation along the value chain. Since critical production processes are converted, it is a fundamental requirement to maintain product quality and yield. Priority is also given to the refractory lining to prove sustainability. From an environmental perspective, new concepts for NOx emission measurement in hydrogen combustion off-gas are developed. Material flow analysis and life cycle analysis methods will support the comprehensive cross-sectorial evaluation, which allows the determination of the potential for the implementation of hydrogen heating processes in energy intensive industry. With these activities, HyInHeat contributes to the objectives of decreasing CO2 emission of the processes while increasing energy efficiency in a cost competitive way keeping NOx emission levels and resource efficiency at least at the same level.
The main objective of H2PlasmaRed is to develop hydrogen plasma smelting reduction (HPSR) technology for the reduction of iron ores and steelmaking sidestreams to meet the targets of the European Green Deal for reducing CO2 emissions and supporting the circular economy in the steel industry across Europe. Our ambition is to introduce a near CO2-free reduction process to support the goal of the Paris Agreement - a 90% reduction in the carbon intensity of steel production by 2050. To achieve this, H2PlasmaRed will develop HPSR from TRL5 to TRL7 by demonstrating the HPSR in a pilot-HPSR reactor (hundred-kilogram-scale) that is an integrated part of a steel plant, and in a pilot-scale DC electric arc furnace (5-ton scale) by retrofitting the existing furnace. The project's end goal is to establish a way to upscale the process from pilot-scale into industrial practice. To support this goal, the novel sensors and models developed and implemented in the project are used for HPSR process optimization from a reduction, resource, and energy efficiency standpoint.
The EASI-SMR project intends to address the safety issues related to the LW-SMR in order to provide advances that should support implementation of such technologies as soon as possible. The EASI SMR project activities are aimed at ensuring that these reactors will be designed, constructed, commissioned and operated in the safest possible way and in accordance with existing regulations. The consortium was carefully chosen so that the research entities can provide the necessary research teams and support facilities across the European Continent and beyond. EASI-SMR will address the safety issues associated with major LW-SMR innovations: • Passive systems • Soluble Boron-free cores • Co-generation and hybridation • Additive manufacturing to improve compactness of Nuclear Steam Supply System • Multi-units operation The work aims to provide insights for European LW-SMR projects, in particular: • NUWARD SMR, a French design of a reactor generating 170 MW of electricity production. • LDR-50, a Finnish design of a district heating reactor of 50 MW EASI-SMR is closely linked with NUGENIA TA6 and the European SMR pre-Partnership’s WS5.
EAF steelmaking is the key technology for decarbonised steelmaking, either in scrap-based plant by modification of existing processes for further decarbonisation, or as new EAF installations in decarbonised integrated steel works to (partly) replace the classical BF-BOF production. At same time the EAF is the most important example for modular and hybrid heating, already now combining electric arc heating with burner technologies. Consequently, it was selected as main focus of GreenHeatEAF for the Call „Modular and hybrid heating technologies in steel production“. GreenHeatEAF develops and demonstrates the most important decarbonisation approaches at EAFs including the use of hydrogen to replace natural gas combustion in existing or re-vamped burners or innovative technologies like CoJet. Furthermore, decarbonisation of EAF steelmaking by solid materials like DRI/HBI and renewable carbon sources like biochar is tackled. Technologies to re-optimise the heating management with maximum heat recovery of off-gas and slag employing new sensor and soft-sensor concepts as well as extended digital twins are developed: as result the extended CFD and flowsheeting models, and monitoring and control tools will prognose the influences of the different decarbonisation measures on EAF and process chain to support upcoming decarbonisation investments and to enable the control of decarbonised hybrid heating with maximum energy efficiency. GreenHeatEAF combines trials in demonstration scale, e.g. in combustion- and EAF-demo plants, with validations in industrial scale and digital optimisations with high synergy. Thus, it completely follows the Horizon Twin Transition and Clean Steel Partnership objectives and the target to progress decarbonisation technologies from TRL 5 to 7. This synergic concept of GreenHeatEAF supports implementation and digitisation to speed up the transition of the European steel industry to highly competitive energy-efficient decarbonised steel productio
The aim of E-ECO Downstream is to enable a clean steel production by developing advanced and breakthrough technologies for the steel making downstream processes. This will decisively support the EU in achieving its goal towards climate neutrality by 2050. E-ECO Downstream focuses on the efficient utilization of hydrogen, biogas, and electricity to substitute carbon-based fuels and drastically lower the carbon footprint of the steel production. Energy efficiency is pursued to enable sustainable utilization of volatile green energy. Currently installed burners of reheating furnaces will be enabled to utilize green H2 by integration of newly designed and 3D-printed burner components instead of replacing entire burner systems. To increase fuel flexibility hybrid heating concepts (H2 and electricity) will be investigated in a pilot walking beam furnace. Since the mentioned solutions will change the waste heat streams and their heat recovery in future downstream processes must be reevaluated. This will be done by analysing the partners processes and plants, development and testing of waste heat recovery concepts and recuperators regarding their suitability to new fuels and their off gases, while considering their impact on materials/product. Energy efficiency potentials of downstream processes will be evaluated by case studies for the application of hot charge from casting to hot rolling by covering of the slabs with passive and active panels. The elaborated solutions will be assessed by techno-eco-environmental analysis to evaluate their applicability and to increase their acceptance in the steel community. The E-ECO Downstream consortium has a deep and shared knowledge of iron and steel making, downstream processes and heating technology, materials engineering, numerical simulation, experimental investigations, economy, and life cycle analysis.