
Infrastructure is a large part of the UK's assets. Efficient management and maintenance of infrastructure are vital to the economy and society. The application of emerging technologies to advanced health monitoring of existing critical infrastructure assets will quantify and define the extent of ageing and the consequent remaining design life of infrastructure, thereby reducing the risk of failure. Emerging technologies will also transform the industry through a whole-life approach to achieving sustainability in construction and infrastructure in an integrated way - design and commissioning, the construction process, exploitation and use, and eventual de-commissioning. Crucial elements of these emerging technologies will be the application of the latest sensor technologies, data management tools and manufacturing processes to the construction industry, both during infrastructure construction and throughout its design life. There will be a very substantial market for exploitation of these technologies by the construction industry, particularly contractors, specialist instrumentation companies and owners of infrastructure.In this proposal, we seek to create the Innovation and Knowledge Centre for Smart Infrastructure and Construction that will bring together four leading research groups in the Cambridge Engineering Department and the Computer Laboratory (sensors, computing, manufacturing engineering and civil engineering), along with staff in other faculties - the Judge Business School and the Department of Architecture. The Centre will develop and commercialise emerging technologies which will provide radical changes in the construction and management of infrastructure, leading to considerably enhanced efficiencies, economies and adaptability. We propose to create 'Smart Infrastructure' with the following attributes: (a) minimal disturbance and maximum efficiency during construction, (b) minimal maintenance for new infrastructure and optimum management of existing infrastructure, (c) minimal failures even during extreme events (fire, natural hazards, climate change), and (d) minimal waste materials at the end of the life cycle. The IKC will focus on the innovative use of emerging technologies in sensor and data management (e.g. fibre optics, MEMS, computer vision, power harvesting, Radio Frequency Identification (RFID), and Wireless Sensor Networks). These will be coupled with emerging best practice in the form of the latest manufacturing and supply chain management approaches applied to construction and infrastructure (e.g. smart building components for life-cycle adaptive design, innovative manufacturing processes, integrated supply chain management, and smart management processes from building to city scales). It will aim to develop completely new markets and achieve breakthroughs in performance.The business opportunities in construction and infrastructure are very considerable, not only for construction companies but also for other industries such as IT, electronics and materials. The IKC is designed to respond directly and systematically to the input received from industry partners on what is required to address this issue. Through the close involvement of industry in technical development as well as in demonstrations in real construction projects, the commercialisation activities of emerging technologies will be progressed during the project to a point where they can be licensed to industry. The outputs of the IKC will provide the construction industry, infrastructure owners and operators with the means to ensure that very challenging new performance targets can be met. Furthermore the potential breakthroughs will make the industry more efficient and hence more profitable. They will also give UK companies a competitive advantage in the increasingly global construction market.
The AI2M research cluster will bring together leading researchers and practitioners in high value manufacturing, information science, ICT, mathematical sciences and manufacturing services to address the needs for future globally competitive ICT-supported manufacturing practices and infrastructures. The cluster also leverages two distinct supply chains, automotive and aerospace and defence with associated ICT and manufacturing service providers. UK manufacturing has to migrate towards supplying innovative, high quality, variable volume solutions to a global market. Low wage competition and reduced profit margins increase the difficulty of recovering the costs of early lifecycle phases (specification, design, analysis and setup) especially for lower volume products. "Right first time" production is a necessity to survive. In the automotive domain the relatively high volume market is crippled by increased complexity, quality and customer demands for variety. The high added-value, low volume defence and aerospace domains are also under pressure from: the spectrum of product and process complexity; the harsh manufacturing and operational environments and severe safety and legislative requirements. The future of UK manufacturing depends on supply chains being able to: remove defects generated throughout manufacturing; formalise and share product and process knowledge; optimise strategy based on resource utilisation, traceability and lifecycle performance monitoring and understand the implications of design features on manufacturing and operational performance as well as the impact of new materials, components and legislation (e.g. End of Life Vehicle) and the impact of the adoption of new technologies and business models. To pay dividends both in supply chain efficiencies, compliance and new business models, companies must capture and analyse a larger range of data, faster, at lower cost and manage it better than ever before. The challenge of this project is therefore to develop an on-demand intelligent product lifecycle service system for increased yield for products and processes that can bridge the information gaps associated with inefficient supply chain integration and a lack of knowledge on product usage throughout lifecycles. Current commercial solutions are limited to "on-site" silos of information that are restricting UK manufacturing in terms of its ability to: optimise efficiency in materials, resource, energy utilisation; speed up innovation; improve the generation and exploitation of manufacturing intelligence; support supply chain collaboration throughout the product and process lifecycles, and enable new business models and technologies to be readily adopted (e.g. product service systems (PSS) supporting either product operation, usage or results oriented business models). The key research challenges to be addressed by this cluster include: Service Foundations (dynamically reconfigurable architectures, data and process integration and sematic enhanced service discovery); Service Composition (composability analyses, dynamic and adaptive processes, quality of service compositions, business driven compositions); Service Management and Monitoring (self: -configuring, -adapting, -healing, -optimising and -protecting and Service Design and Development engineering of business services, versioning and adaptivity, governance across supply chains).
Globally, national infrastructure is facing significant challenges: - Ageing assets: Much of the UK's existing infrastructure is old and no longer fit for purpose. In its State of the Nation Infrastructure 2014 report the Institution of Civil Engineers stated that none of the sectors analysed were "fit for the future" and only one sector was "adequate for now". The need to future-proof existing and new infrastructure is of paramount importance and has become a constant theme in industry documents, seminars, workshops and discussions. - Increased loading: Existing infrastructure is challenged by the need to increase load and usage - be that number of passengers carried, numbers of vehicles or volume of water used - and the requirement to maintain the existing infrastructure while operating at current capacity. - Changing climate: projections for increasing numbers and severity of extreme weather events mean that our infrastructure will need to be more resilient in the future. These challenges require innovation to address them. However, in the infrastructure and construction industries tight operating margins, industry segmentation and strong emphasis on safety and reliability create barriers to introducing innovation into industry practice. CSIC is an Innovation and Knowledge Centre funded by EPSRC and Innovate UK to help address this market failure, by translating world leading research into industry implementation, working with more than 40 industry partners to develop, trial, provide and deliver high-quality, low cost, accurate sensor technologies and predictive tools which enable new ways of monitoring how infrastructure behaves during construction and asset operation, providing a whole-life approach to achieving sustainability in an integrated way. It provides training and access for industry to source, develop and deliver these new approaches to stimulate business and encourage economic growth, improving the management of the nation's infrastructure and construction industry. Our collaborative approach, bringing together leaders from industry and academia, accelerates the commercial development of emerging technologies, and promotes knowledge transfer and industry implementation to shape the future of infrastructure. Phase 2 funding will enable CSIC to address specific challenges remaining to implementation of smart infrastructure solutions. Over the next five years, to overcome these barriers and create a self-sustaining market in smart infrastructure, CSIC along with an expanded group of industry and academic partners will: - Create the complete, innovative solutions that the sector needs by integrating the components of smart infrastructure into systems approaches, bringing together sensor data and asset management decisions to improve whole life management of assets and city scale infrastructure planning; spin-in technology where necessary, to allow demonstration of smart technology in an integrated manner. - Continue to build industry confidence by working closely with partners to demonstrate and deploy new smart infrastructure solutions on live infrastructure projects. Develop projects on behalf of industry using seed-funds to fund hardware and consumables, and demonstrate capability. - Generate a compelling business case for smart infrastructure solutions together with asset owners and government organisations based on combining smarter information with whole life value models for infrastructure assets. Focus on value-driven messaging around the whole system business case for why smart infrastructure is the future, and will strive to turn today's intangibles into business drivers for the future. - Facilitate the development and expansion of the supply chain through extending our network of partners in new areas, knowledge transfer, smart infrastructure standards and influencing policy.
A Centre for Innovative Manufacture in Laser-based Production Processes is proposed. This Centre will exploit the unique capabilities of laser light to develop new laser-based manufacturing processes, at both micro and macro levels, supported by new laser source, process monitoring and system technologies. The past 25 years has seen industrial lasers replace many 'conventional' tools in diverse areas of manufacture, enabling increased productivity, functionality and quality, where for example laser processing (cut/join/drill/mark) has revolutionised automotive, aerospace and electronics production. However the penetration of laser technology into some areas such as welding and machining has been less than might have been anticipated. But recently there has been a significant 'step change-opportunity' to take laser-based processing to a new level of industrial impact, brought about by major advances in laser technology in two key areas: (i) A new generation of ultra-high quality and reliability lasers based around solid state technology (laser diode and optical fibre) has evolved from developments in the telecoms sector. These lasers are leading to systems with very high levels of spatial and temporal controllability. This control, combined with advanced in-process measurement techniques, is revolutionising the science and understanding of laser material interactions. The result of this is that major improvements are being made in existing laser based processes and that new revolutionary processes are becoming viable, e.g. joining of dissimilar materials. (ii) A new generation of high average power laser technologies is becoming available, offering controllable trains of ultrashort (picosecond and femtosecond) pulses, with wavelengths selectable across the optical spectrum, from the infrared through to the ultra-violet. Such technology opens the door to a whole range of new laser-based production processes, where thermal effects no longer dominate, and which may replace less efficient 'conventional' processes in some current major production applications. These new developments are being rapidly exploited in other high-value manufacturing based economies such as Germany and the US. We argue that for the UK industry to take maximum advantage of these major advances in both laser material processing and machine technology there is an urgent requirement for an EPSRC Centre for Innovative Manufacturing in Laser-based Production Processes. This will be achieved by bringing together a multi-disciplinary team of leading UK researchers and key industry partners with the goal of exploiting 'tailored laser light'. Together with our industrial partners, we have identified 2 key research themes. Theme A focuses on Laser Precision Structuring, i.e. micro-machining processes, whilst Theme B is focused on joining and additive processes. Spanning these themes are the laser based manufacturing research challenges which fall into categories of Laser Based Production Process Research and Laser Based Machine Technologies, underpinned by monitoring and control together with material science. Research will extend from the basic science of material behaviour modelling and laser-material interaction processes to manufacturing feasibility studies with industry. The Centre will also assume an important national role. The Centre Outreach programme will aim to catalyse and drive the growth of a more effective and coherent UK LIM community as a strong industry/academia partnership able to represent itself effectively to influence UK/EU policy and investment strategy, to promote research excellence, and growth in industrial take-up of laser-based technology, expand UK national knowledge transfer and marketing events and improve the coordination and quality of education/training provision.
The aim of this project is to explore the use of laser-generated ultrasound in thermosonic (TS) bonding. TS bonding is a joining technique which uses a combination of heat, pressure and ultrasonic energy to facilitate the formation of strong metal-metal bonds. It is used mainly for attaching bond wires to silicon chips inside their packages, where it offers a number of advantages over other joining methods. For example, it involves no additional materials (e.g. solders or adhesives), and it can be carried out at lower temperature and pressure than thermo-compression bonding and lower ultrasonic power than pure ultrasonic welding. An important potential application for TS bonding is flip chip assembly, a technique used in advanced electronics manufacturing. Flip chip allows unpackaged integrated circuits to be attached to a circuit board or other substrate in a face-down configuration, with electrical connections between the contact pads on the chip and the substrate being provided by conducting "bumps". Flip chip assembly offers several advantages over other chip attachment methods, such as higher electrical performance, higher interconnect density (more electrical connections per unit area), smaller footprint and lower height. Flip chip processes based on solder attachment have been established for many years. However, with the continual drive for miniaturization they are approaching their limits in terms of interconnect density. Alternative approaches based on adhesive bonding are scalable to finer interconnect pitches, but do not achieve the performance or reliability required for many applications. TS bonding could form the basis of a highly reliable, ultra-fine-pitch flip chip technology. However, up to now it has proved challenging to develop robust processes, mainly because it is highly sensitive to co-planarity errors and bump height variations which can lead to bond strength non-uniformity and even damage to the chip. These issues become more severe as the chip size increases, and consequently TS flip chip has been limited to a narrow range of applications involving small devices with low interconnect count. We propose to develop a TS bonding process in which pulsed laser light is used to generate ultrasound locally at specific bonding sites, using confined ablation of a sacrificial carrier tape sandwiched between the workpiece and a transparent bond head. This approach will enable us to deliver the ultrasonic energy in a flexible manner, allowing for the possibility of compensating for co-planarity and bump height errors. With the proposed system it will also be possible to pre-heat the interface locally by laser, yielding a process with very low overall thermal loading. If successful, the proposed research will ultimately lead to a next generation flip chip technology with wide ranging applications in electronics manufacturing. The new process should also find applications in other fields such as MEMS (microelectromechanical systems) and optoelectronics where joining of delicate components is required.