
The main aim of the CleanHME proposal is to develop a new, clean, safe, compact and very efficient energy source based on Hydrogen-Metal and plasma systems, which could be a breakthrough for both private use as well as for industrial applications. The new energy source could be employed both as a small mobile system or alternatively as a stand-alone heat and electricity generator. Hydrogen-Metal Energy (HME) is gained when hydrogen reacts with some metals under slightly increased temperature and pressure. First experiments have shown that the total heat energy produced exceeds by many orders of magnitude the chemical energy and strongly depends on applied active metallic materials and gas conditions in special reactors. Furthermore, accelerator experiments performed at higher energies of hydrogen isotopes have shown that the reaction rates can be enhanced by many orders of magnitude due to so-called electron screening effect if metallic samples with special nanostructures or crystal lattice defects are utilized. Thus, the main objectives of our proposal are to elaborate a comprehensive theory of HME phenomena and optimize the choice of the best materials for energy production in hydrogen-metal systems by combining accelerator and gas-loading experiments and to improve the reactors design leading to higher and stable energy production. We plan to construct a new compact reactor to test the HME technology during the long-term experiments and increase its technology readiness level. The proposed solutions have a potential to be a breakthrough for the power supply industry and present a solution for a carbon-free technology contributing to the climate and natural environment protection. To ensure it, we would like to build a broad multidisciplinary European consortium of scientific institutions, start-ups and commercial companies spread over 9 European countries, collaborating with leading scientists in USA and Canada.
The use of solar energy for photoelectrochemically splitting water into H2 and O2 has been widely investigated for producing sustainable H2 fuel. However, no commercialisation of this technology has emerged. Currently the main obstacles to commercialisation are: low solar-to-hydrogen efficiency, expensive electrode materials, fast degradation of prototypes, and energy losses in separating H2 from O2 and water vapour in the output stream. The FotoH2 consortium has identified a new scientific direction for achieving cost-effective solar-driven H2 production, and it has the capability of large-scale prototyping and field testing the proposed technology. FotoH2 introduces anion-exchange polymer membrane and porous hydrophobic backing concepts in a tandem photoelectrochemical cell, and a novel way to stabilise the photoelectrodes based on a surface phase transformation. This approach allows the use of cost-effective metal oxide electrodes with optimal bandgaps and a simple flow-cell design without corrosive electrolytes. Apart from the already identified Fe2O3/CuO couple, a theoretical screening of earth abundant metal ternary oxides will be done to identify the most promising materials. These chosen electrode materials will be optimized by doping, nanostructuring and by introducing protective and passivating external layers by the phase transformation strategy. Most of these concepts have been already validated at TRL 3 and preliminary laboratory prototypes were demonstrated. The aim is to increase the TRL to 5 by validating the technology in a system with a module of 1 m2 and achieve a photoelectrolysis device with solar to-hydrogen efficiency of 10 % and a prospective life-time of 20 years. We aim for breakthroughs in cell lifetime, conversion efficiency, cost-efficiency, and H2 purity. To bring these innovations to market, an exploitation plan is addressed. The consortium includes materials developers and suppliers, device manufacturers and system integrator.
Automation in passenger cars is constantly increasing. In order to leverage the introduction of highly automated vehicles to the market and to fully exploit the automation’s potential to improve traffic safety and efficiency the careful design of the human-machine interaction is of utmost importance. Human drivers will remain part of the system for a long time. The vision of AutoMate is a novel driver-automation interaction and cooperation concept to ensure that (highly) automated driving systems will reach their full potential and can be commercially exploited. This concept is based on viewing and designing the automation as the driver’s transparent and comprehensible cooperative companion or teammate. Driver and automation are regarded as members of one team that understand and support each other in pursuing cooperatively the goal of driving safely, efficiently and comfortably from A to B. Only such kind of systems can enhance safety by using the strength of both the automation and human driver in a dynamic way. These systems will be trusted and accepted, which is inevitable for drivers to be willing to buy and use such systems appropriately. The top-level objective of AutoMate is to develop, demonstrate and evaluate the “TeamMate Car” concept as a major enabler of highly automated vehicles. In order to realize the concept we will perform research and develop innovations for 7 technical Enablers: (1) Sensor and Communication Platform, (2) Probabilistic Driver Modelling and Learning; (3) Probabilistic Vehicle and Situation Modelling; (4) Adaptive Driving Manoeuvre Planning, Execution and Learning; (5) Online Risk Assessment; (6) TeamMate HMI; and (7) TeamMate System Architecture. The corresponding innovations will be integrated und implemented on several car simulators and real vehicles to evaluate and demonstrate the project progress and results in real-life traffic conditions.
Electromobility is a major factor towards transport decarbonisation. However a number of challenges (limited charging options, lack of interoperability, absence of a unified identification/payment process, energy grid overload, expensive charging tariffs) limit the potential for interoperable and seamless electromobility services to a wider of actors and geographic area, hindering electromobility adoption. These challenges stem from lack of standardisation in electromobility data and services. NeMo addresses all issues through a pan-European eRoaming Hyper-Network that allows seamless and interoperable use of electromobility services throughout Europe. In addition it provides an Open Cloud Marketplace, where third parties can provide services (B2B2C) aiming to increase EV attractiveness. The NeMo Hyper-Network is a distributed environment with open architecture based on standardised interfaces, in which all electromobility actors, physical (i.e. CPs, grids, EVs) or digital (i.e. CPOs, DSOs, etc.), can connect and interact seamlessly, exchange data and provide more elaborate electromobility ICT services in a fully integrated and interoperable way both B2B and B2C. The connection will be based on dynamic translation of data and services interfaces according to needs of the specific scenarios and involved stakeholders. NeMo is not just another proprietary platform for electromobility but a full open eco-system allowing continuous and uninterrupted provision of data and services. NeMo will raise awareness, liaise with standardisation bodies and contribute to the evolution of protocols and standards by developing public Common Information Models which incorporate all existing electromobility related standards and constantly update them to reflect standards evolution. NeMo will also propose sustainable business models for all electromobility actors opening new opportunities for SMEs and EU Industry.