
The ORCA Project proposal addresses topic GV-03-2016, of the Transport Work Programme. The work proposed will, in a single coordinated project, address all the aspects of the domain 2 “For pure and plug-in hybrids, power-train system integration and optimisation through the re-use of waste heat, advanced control, downsizing of ICEs, innovative transmissions and the integration of electronic components” regarding Heavy Duty Vehicles. The activity proposed will be conducted by an 11-member consortium from 7 different European Members States representing all requested competencies in the field of powertrain optimization for Heavy Duty vehicles. The consortium comprises OEMs with IVECO-ALTRA, CRF and VOLVO (also members of EUCAR, suppliers VALEO, BOSCH, JOHNSON MATTHEY and JSR MICRO (CLEPA), leading Engineering and Technology Companies/organizations and Universities with TNO, FRAUNHOFER, and VUB (EARPA). The majority are also active members of ERTRAC and EGVIA. The overall objectives of the ORCA project are: Reduce the TCO to the same diesel vehicle TCO level, targeting over 10% system cost premium reduction compared to actual IVECO hybrid bus and VOLVO conventional truck with the same performances, same functionalities and operative cost, and also targeting up to 10% rechargeable energy storage (RES) lifetime/energy throughput improvement. Improve the hybrid powertrain efficiency up to 5% compared to actual IVECO hybrid bus and conventional truck through optimized RES selection & sizing and by improving the energy and ICE management. Reduce the fuel consumption by 40% compared to an equivalent conventional HD vehicle (bus & truck). Downsize the ICE by at least 50% compared to actual IVECO hybrid bus and VOLVO conventional truck. Improve the electric range from 10km to 30km by adding the PHEV capabilities and optimising the RES capacity. Case study assessment to replace a diesel engine by a CNG engine for future heavy-duty vehicles.
MUSE GRIDS aims to demonstrate, in two weakly connected areas (a town on a top of a hill and a rural neighbourhood), a set of both technological and non-technological solutions targeting the interaction of local energy grids (electricity grids, district heating and cooling networks, water networks, gas grids, electromobility etc.) to enable maximization of local energy independency through optimized management of the production via end user-driven control strategies, smart grid functionality, storage, CHP and RES integration. Two large-scale pilot projects will be implemented in two different EU regions, in urban (Osimo) and rural (Oud-Heverlee) contexts with weak connections with national grids. These pilots will test and promote the main project concepts: Smart energy system and Local Energy Community. A Smart Energy System is defined as an approach in which smart electricity, thermal, water, gas grids etc are combined with storage technologies and coordinated to identify synergies between them towards maximization of energy independency and reduction of operation costs. The purpose is to reduce energy carbon footprint while meeting energy demands and creating real and sustainable energy islands. To achieve this both physical networks (electricity, natural gas, district heating and cooling, water) and non-physical networks (mobility and citizens/communities) have to interact in order to become a Local Energy Community where inhabitants can act and exchange energy to provide reliable and cheap energy in colaboration. MUSE GRIDS will promote these two concepts not only in pilot projects but also in virtual demo-sites in India, Israel and Spain. Social and environmental aspects of smart multi-energy system transition will be investigated Osimo and Oud Heverlee citizens will be directly involved.The project involves leading EU companies and energy utilites and will be a muse of inspiration for dedicated policy redaction also providing insights to the BRIDGE initiative