
Wikidata: Q642189
ISNI: 0000000095452456
Medical imaging has transformed clinical medicine in the last 40 years. Diagnostic imaging provides the means to probe the structure and function of the human body without having to cut open the body to see disease or injury. Imaging is sensitive to changes associated with the early stages of cancer allowing detection of disease at a sufficient early stage to have a major impact on long-term survival. Combining imaging with therapy delivery and surgery enables 3D imaging to be used for guidance, i.e. minimising harm to surrounding tissue and increasing the likelihood of a successful outcome. The UK has consistently been at the forefront of many of these developments. Despite these advances we still do not know the most basic mechanisms and aetiology of many of the most disabling and dangerous diseases. Cancer survival remains stubbornly low for many of the most common cancers such as lung, head and neck, liver, pancreas. Some of the most distressing neurological disorders such as the dementias, multiple sclerosis, epilepsy and some of the more common brain cancers, still have woefully poor long term cure rates. Imaging is the primary means of diagnosis and for studying disease progression and response to treatment. To fully achieve its potential imaging needs to be coupled with computational modelling of biological function and its relationship to tissue structure at multiple scales. The advent of powerful computing has opened up exciting opportunities to better understand disease initiation and progression and to guide and assess the effectiveness of therapies. Meanwhile novel imaging methods, such as photoacoustics, and combinations of technologies such as simultaneous PET and MRI, have created entirely new ways of looking at healthy function and disturbances to normal function associated with early and late disease progression. It is becoming increasingly clear that a multi-parameter, multi-scale and multi-sensor approach combining advanced sensor design with advanced computational methods in image formation and biological systems modelling is the way forward. The EPSRC Centre for Doctoral Training in Medical Imaging will provide comprehensive and integrative doctoral training in imaging sciences and methods. The programme has a strong focus on new image acquisition technologies, novel data analysis methods and integration with computational modelling. This will be a 4-year PhD programme designed to prepare students for successful careers in academia, industry and the healthcare sector. It comprises an MRes year in which the student will gain core competencies in this rapidly developing field, plus the skills to innovate both with imaging devices and with computational methods. During the PhD (years 2 to 4) the student will undertake an in-depth study of an aspect of medical imaging and its application to healthcare and will seek innovative solutions to challenging problems. Most projects will be strongly multi-disciplinary with a principle supervisor being a computer scientist, physicist, mathematician or engineer, a second supervisor from a clinical or life science background, and an industrial supervisor when required. Each project will lie in the EPSRC's remit. The Centre will comprise 72 students at its peak after 4 years and will be obtaining dedicated space and facilities. The participating departments are strongly supportive of this initiative and will encourage new academic appointees to actively participate in its delivery. The Centre will fill a significant skills gap that has been identified and our graduates will have a major impact in academic research in his area, industrial developments including attracting inward investment and driving forward start-ups, and in advocacy of this important and expanding area of medical engineering.
The GRACE integrated solution aims to transform the healthcare ecosystem by providing essential knowledge and innovative public-private partnership for (1) reorganizing healthcare services (2) with embedded innovative technologies and tools, helping identifying and overcoming barriers and gaps that are now hindering CVD management, ensuring a seamless continuum of care and optimized care pathways. Our vision is that introducing effective health technology and interventions is economically, societally and environmentally sustainable if and only accompanied by a substantial healthcare service re-organization. Accordingly, GRACE will focus on an end-to-end clinical pathway CVD, considering an holistic view of the patient and optimizing healthcare services leveraging on advanced technological solutions. GRACE intervention will be multifold aiming at: (1) guiding strategic policies, (2) drive market innovation, and (3) foster effective healthcare delivery practices in CVD, generating value for patients, healthcare workers and system. GRACE will enable early and personalized interventions, fostering coordination of multidiscipline healthcare teams, triggering more intense and person-specific management using innovative technologies, AI and digital solutions for early detection of red flags, promoting patient empowerment, while comprehensively containing CVD risk factors and burden. A multidisciplinary consortium of experienced and competitive partners will implement this vision and implement the proposed solution in a novel multidiscipline manner.
TRANSFORMATIVE RESEARCH VISION We aim to create a platform of wirelessly networked therapeutic implants which are powered by harvesting energy from the body's own energy supply: glucose. The use of energy harvesting will allow for much smaller implants with much easier surgical implementation, and thus much wider use. The ability of multiple implants to reliably communicate with each other will allow for new types of personalised medical therapies. In particular, it will allow for tuning of the therapeutic interventions according to sensed information from across the body. CLINICAL APPLICATION SPACE Across the world, societies are rapidly ageing, so a key challenge is to ensure healthy optimal lifespans for as many as possible. Drug therapies have been improving, but it can be difficult to optimally modulate or tune the body's function to the normal daily cycle. So, in recent years there has been a surge of interest in bioelectronic solutions. For example, SetPoint Medical just received FDA approval (Autumn 2020) for a vagal nerve implant to treat arthritis. Here in the UK, Galvani is hoping to achieve similar success with trials already underway. Bioelectronics has many modes of operation - including pacemakers for heart, brain and body, sensory restoration (for the deaf and blind), and short-term healing applications such as supporting opioid withdrawal. The market is therefore very large, and expected to grow rapidly in the coming decades. In the first instance, we will target Cardiac Arrhythmias. WHY OUR TEAM? We have brought together a leading UK team of bioelectronic experts with knowledge in microelectronics, ultrasonic communication, micro-fuel cells, artificial intelligence, and medical device design to push this project forward. Furthermore, three of the team have direct experience in the medical technology industry, and we have separately been involved in multiple large clinical translation projects. We strongly believe we can achieve success in this high-risk, high-reward project as we have already created working pre-requisites for each of the components. WHY NOW? Bioelectronic implants have steadily been reducing in size. The Medtronic Micro cardiac pacemaker now has the diameter of a marker pen. However, further miniaturisation is difficult because implantable batteries need to be armoured. Further decreases in size will make battery capacity negligible given the minimum dimensions of the armour plate. Furthermore, existing implants act as independent entities and can only sense in their immediate vicinity. As such it is difficult, for example, to fully synchronise the left and right ventricle stimulation of the heart. Similarly synchronous stimulus of an internal organ, e.g. the liver or pancreas, according to clinical signs elsewhere in the body is currently very challenging, if not impossible. UNDERPINNING INNOVATIONS: our proposal is based on two breakthrough capabilities that we have been developing in respective labs, and are only now becoming possible: 1. GLUCOSE ENERGY HARVESTING: We are now able to harvest sufficient energy to drive a cardiac pacemaker from glucose in the body's interstitial fluid. At the core of the harvester is a fuel cell that uses metallic-nanostructured catalysts with an architecture scalable to long term operation inside the body. 2. RELIABLE ULTRASONIC INTRABODY COMMUNICATIONS: We have developed a prototype ultrasound communication scheme with in-built error correction, which can, for the first time, allow for reliable communication between disperse implants. When optimised for use in intrabody networks, our system will allow for dispersed sensing and intelligence not currently possible.