Powered by OpenAIRE graph
Found an issue? Give us feedback

Ashland Inc

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/S023631/1
    Funder Contribution: 5,905,500 GBP

    Soft Matter is ubiquitous, in the form of polymers, colloids, gels, foams, emulsions, pastes, or liquid crystals; of synthetic or biological origin; as bulk materials or as thin films at interfaces. Soft Matter impinges on almost every aspect of human activity: what we eat, what we wear, the cars we drive, the medicines we take, what we use to keep clean and healthy, in sport and leisure. Soft Matter plays a role in many industrial processes including new frontiers such as digital manufacturing, regenerative medicine and personalised products. Soft Matter is complex chemically and physically with structure and properties that depend on length and time scales. Too often the formulation of soft materials has been heuristic, without the fundamental understanding that underpins predictive design, which hampers innovation and leads to problems in scale up and reformulation in response to changing regulation or customer preferences. Durham, Edinburgh and Leeds Universities set up the SOFI CDT in 2014 in response to the challenge from manufacturers across the personal care, coatings, plastics and food sectors to provide future employees with the skills to transform the design and manufacture of soft materials from an art into a science. The dialogue continues with industrial partners, both old and new, which has resulted in this bid for a refreshed CDT in Soft Matter - SOFI2 - that reflects the evolving scientific, technological and industrial landscape. We have a new partnership with the National Formulation Centre, who will lead a training case study and contribute to the wider training programme, and with many new partners from SMEs to multinationals. We will seek to involve more small and medium-sized companies in SOFI2 by providing opportunities for them to engage in training and project supervision. SOFI2 will have increased training in biological soft matter, which has been identified as a growth area by the EPSRC and our partners, and in scale-up and manufacturing, so that our students can understand better the challenges of taking ideas from the laboratory to the customer. Social responsibility in research and innovation will be embedded throughout the training program and we will trial new ideas in participatory research where the public is involved in the creation of research projects. Each cohort of 16 students will spend their first six months on a common training programme in science and engineering, built around case studies co-delivered with industry partners. They then select their PhD projects and join their research groups in Durham, Leeds or Edinburgh. Generic and transferable skills training continues throughout the four years, bringing the cohorts together for both academic-led and student-led activities. We aim to produce SOFI2 graduates who are business-aware and who are good citizens as well as good scientists. The importance of Soft Matter to the UK economy cannot be understated. Industry sectors relying on Soft Matter include paints and coatings; adhesives, sealants and construction products; rubber, plastics and composite materials; pharmaceuticals and healthcare; cosmetics and personal care; household and professional care; agrochemicals; food and beverages; inks and dyes; lubricants and fuel additives; and process chemicals. A 2018 InnovateUK report estimate the formulated products sector (most of which involves Soft Matter) contributed £149 billion annually to the UK economy. The formulated products sector is undergoing a rapid transformation in response to a shift to sustainable feedstocks, environmental and regulatory pressures and personalised products. It will also be shaped in unpredictable ways by data analytics and artificial intelligence. SOFI2 will equip students with the knowledge and skills to thrive in this business environment.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015536/1
    Funder Contribution: 4,858,140 GBP

    Soft matter and functional interfaces are ubiquitous! Be it manufactured plastic products (polymers), food (colloids), paint and other decorative coatings (thin films and coatings), contact lenses (hydrogels), shampoo and washing powder (complex mixtures of the above) or biomaterials such as proteins and membranes, soft matter and soft matter surfaces and interfaces touch almost every aspect of human activity and underpin processes and products across all industrial sectors - sectors which account for 17.2% of UK GDP and over 1.1M UK employees (BIS R&D scoreboard 2010 providing statistics for the top 1000 UK R&D spending companies). The importance of the underlying science to UK plc prompted discussions in 2010 with key manufacturing industries in personal care, plastics manufacturing, food manufacturing, functional and performance polymers, coatings and additives sectors which revealed common concerns for the provision of soft matter focussed doctoral training in the UK and drove this community to carry out a detailed "gap analysis" of training provision. The results evidenced a national need for researchers trained with a broad, multidisciplinary experience across all areas of soft matter and functional interfaces (SOFI) science, industry-focussed transferable skills and business awareness alongside a challenging PhD research project. Our 18 industrial partners, who have a combined global work force of 920,000, annual revenues of nearly £200 billion, and span the full SOFI sector, emphasized the importance of a workforce trained to think across the whole range of SOFI science, and not narrowly in, for example, just polymers or colloids. A multidisciplinary knowledge base is vital to address industrial SOFI R&D challenges which invariably address complex, multicomponent formulations. We therefore propose the establishment of a CDT in Soft Matter and Functional Interfaces to fill this gap. The CDT will deliver multidisciplinary core science and enterprise-facing training alongside PhD projects from fundamental blue-skies science to industrially-embedded applied research across the full spectrum of SOFI science. Further evidence of national need comes from a survey of our industrial partners which indicates that these companies have collectively recruited >100 PhD qualified staff over the last 3 years (in a recession) in SOFI-related expertise, and plan to recruit (in the UK) approximately 150 PhD qualified staff members over the next three years. These recruits will enter research, innovation and commercial roles. The annual SOFI CDT cohort of 16 postgraduates could be therefore be recruited 3 times over by our industrial partners alone and this demand is likely to be the tip of a national-need iceberg.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016281/1
    Funder Contribution: 4,138,920 GBP

    This Centre for Doctoral Training (CDT) is in the field of Polymers, Soft Matter and Colloids. This area of science deals with long-chain molecules, gels, particles, pastes and complex fluids. It is of fundamental importance for many commercial sectors, including paints & coatings, home & personal care products, agrochemicals, engine oils & lubrication, enhanced oil recovery, biomedical devices & drug delivery. Thus substantial EPSRC investment in this industrially-relevant field will directly support the UK economy and enhance its competitiveness over the longer term, as well as contributing to our scientific capacity to address important technical challenges and major societal problems such as sustainability and energy security. Sheffield Polymer Centre academics have a wealth of research experience in the areas of polymer chemistry, polymer physics, colloid science, soft matter physics and polymer engineering. This breadth of expertise is unique and is certainly unrivalled anywhere in the UK. Between us, we offer a superb range of research facilities and state-of-the-art instrumentation that provide excellent postgraduate training opportunities. We have also run a popular annual industrial training course and three relevant taught MSc courses for many years. Thus the logistical experience of our current administrative staff and existing teaching infrastructure will provide invaluable support in running this new CDT. Moreover, this prior activity underlines our institution's deep commitment to this important interdisciplinary field. Our vision is to engage closely with a wide range of companies, e.g. AkzoNobel, Lubrizol, P & G, Cytec, Synthomer, Scott Bader, GEO, Wellstream, LBFoster, Philips, Ossila, Syngenta, DSM, Ashland, BP and Unilever, in order to provide the next generation of highly skilled PhD scientists with high-level technical skills, intellectual rigour, excellent communication skills, flexibility and business acumen. This is essential if we are to produce the creative problem-solvers that will be required to tackle the many formidable technical and societal challenges now facing mankind. Our ambition is to secure at least £2.0 million from our industrial partners in order to support fifty CASE PhD projects over five years. Six PhD studentships p.a. (i.e. thirty in total) are requested from EPSRC, which will be supplemented by a substantial institutional contribution of three studentships p.a. (i.e. fifteen in total). This institutional commitment is in recognition of the continuing strategic importance of this research area to the University of Sheffield. An additional studentship p.a. (i.e. five in total) will be funded by top-slicing the enhanced CASE contributions from our industrial partners to make up the annual cohort of ten students. EPSRC investment in this CDT is warranted given our substantial institutional portfolio of many active EPSRC grants (including Programme and Platform grants), plus a £2.0 M ERC grant. Our CDT training programme will include the following highly distinctive features: (i) our unrivalled breadth of academic knowledge and experience; (ii) a choice of research projects for our PhD students prior to their enrolment; (iii) an initial two-week training course on the basic principles of polymer science and engineering; (iv) a monthly seminar programme led by industrial scientists to expose our students to a wide range of commercially-relevant topics; (v) a six-month secondment with the industrial partner in the latter part of the research programme, which will provide our students with invaluable experience of the workplace and hence prepare them for their industrial and/or managerial careers; (vi) a 'business enterprise' course led by an external consultant (Jo Haigh) and one of our industrial partners (Synthomer) to develop and encourage entrepreneurial flair in each PhD cohort; (vii) a visit to an overseas academic laboratory to facilitate international collaboration.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V047221/1
    Funder Contribution: 1,240,250 GBP

    Traditional pharmaceutical drugs are small molecules that treat the symptoms of a disease. Biopharmaceuticals are larger molecules, for example, peptides and proteins, which target the underlying mechanisms and pathways of a disease that are not accessible with traditional drugs. Recently, there have been rapid and revolutionary developments in this field of biotechnology. Therapeutic peptides and proteins are expected to be used increasingly as vaccines and as treatments for cancer, high blood pressure, pain, blood clots and many other illnesses. However, one of the major challenges to successful clinical use of these so-called "biotech" molecules is their efficient delivery to the site of action. The body breaks these medicines down when they are swallowed and they are generally not well-absorbed into the blood. As a result, they have to be given frequently by injection, which is painful and means that these drugs are usually only administered in hospital. Long-acting formulations of small molecules, increasingly to the fore in treating HIV and TB, must also be injected. The COVID-19 pandemic has greatly increased the need for self-administration of injectables at home, away from healthcare settings, where transmission can have dire consequences. Complexities of storage, distribution and administration, needle phobia and the difficulty of domestic disposal of potentially-contaminated sharps all contribute to an urgent need for alternative delivery modes for injectable drugs/vaccines. Similarly, development of blood-free diagnostic systems is a major priority. We have developed a novel type of transdermal patch that by-passes the skin's barrier layer, which is called the stratum corneum. The patch surface has many tiny needles that pierce the stratum corneum without causing any pain - The sensation is said to feel like a cat's tongue. These needles either dissolve quickly, leaving tiny holes in the stratum corneum, through which medicines can enter the body, or swell, turning into a jelly-like material that keeps the holes open and allows continuous drug delivery. Our unique technology could potentially revolutionise the delivery of peptides and proteins, as well as that of long-acting small molecules that cannot currently be delivered across the skin. Notably, we have also found that our swellable microneedles can extract fluid from the skin. This permits us to monitor the levels of medicines and markers of disease without actually taking blood samples. In the UK, the NHS stands to benefit from reduced costs due to shorter hospital stays and reduced occurrence of inappropriate dosing. Ultimately, health-related-quality-of-life will be enhanced through improved disease control, rapid detection of disease and dangerously high or low levels of medicines, facile monitoring of compliance with prescribed dosing and detection of illicit substances in addicts or vehicle drivers. Preterm neonates will derive great benefit from the marked increase in monitoring frequency permitted, as will elderly patients being treated with multiple medicines. At-home treatment/diagnosis, keeping people away from healthcare settings, will also help reduce spread of COVID-19 to vulnerable in-patients and healthcare workers. We have attracted considerable interest and funding from industry to investigate our technologies for a range of applications. However, to facilitate the commercialisation process and maximise value to the UK, it is now essential to develop methods for rationalised skin application of the microneedles such that they are always applied to every patient in the same way every time and that their efficacy is guaranteed. We will also study, for the first time under industry-standard conditions, repeat application of our microneedles to mimic normal use and to demonstrate safety. Ultimately, commercialisation of the technology will be the primary route by which UK industry, the NHS and patients will derive benefits

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.