Melting in the Earth has a huge effect on its chemical and physical state. For instance, the chemistry of the crust, the mantle and the atmosphere are largely controlled by melting and crystalisation at mid-ocean ridges, hotspots or island arcs. There has, therefore, been an enormous effort in the last decades to understand these shallow melting processes. Yet much deeper melts may have been equally influential in the evolution of the Earth. For instance, it is generally accepted that a deep magma ocean perhaps extending to the Earth's centre, existed early its history. This was the result of multiple impacts as the Earth accreted. From this magma ocean, iron melts separated from silicate melts to form the core, volatiles degassed to form an early atmosphere, and a proto-crust may have formed. It is also accepted that the Earth was hit by a Mars-sized body to create the moon; this too would have caused enormous amounts of melting in the deep Earth. Moreover, there is some evidence for melting in the deep Earth now. It is possible, therefore, that melts in the deepest Earth have existed throughout Earth's history. However, many basic data on the physical and chemical properties of deep melting do not exist. For instance, we don't know the melting curves for mantle minerals and rocks at the pressure and temperatures of the deep Earth. We don't know which minerals crystalise from these melts first (the liquidus phases). We don't know the composition of partial melts of deep mantle rocks or rocks which have been subducted. We don't know the relative densities of the rocks and their melts, and so we do not even know whether minerals float of sink in these deep melts. This lack of data has led to much speculation on the effect of deep melts on the Earth's evolution. For instance, it has been suggested that geophysical and geochemical anomalies in the Earth's mantle have deep early melts as their origin. But these models depend of the chemical and physical properties of the melts and crystalline solids, properties that are simply not known. This project will use novel experiments in conjunction with ab initio modelling obtain these data. The data will provide the chemical and physical foundation on which all future models of the Earths early crystallization and subsequent evolution will be based.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0397f03648ae106508508033baecd144&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0397f03648ae106508508033baecd144&type=result"></script>');
-->
</script>
Natural diamonds are formed at high pressures and temperatures deep within the Earth's interior. When diamonds form, probably from carbonate-rich fluids and melts in the mantle, they sometimes encapsulate small pieces of the minerals that occur at great depth in the Earth. These are called mineral inclusions. The diamonds are then transported from Earth's deep mantle to the surface in uncommon magmas called kimberlites. Diamonds that contain these mineral inclusions are very rare, and offer a truly unique glimpse into what is an otherwise inaccessible portion of the Earth. Some very rare inclusions provide direct samples of lithologies present in the mantle transition zone (400 - 660 km) and the lower mantle (>660 km) - these are often called superdeep diamonds. The chemistry of the inclusions along with mineral phase relations yield important information about the kinds of lithologies they originated in, and constrain the conditions of diamond formation and the depth at which kimberlite magmas form. Thus, superdeep diamonds are very important for studying the types of materials that occur in the deep Earth, for elucidating deep mantle processes, and for understanding how carbon is cycled from the surface to the mantle and back to the surface again - the deep carbon cycle. For example, some diamonds contain materials that are very similar to those occurring near the earth's surface, such as minerals akin to oceanic crust or sediments, and these often have carbon isotopic compositions akin to organic carbon - although this is a controversial subject. From this, we can conclude that surface materials can be transported to great depth, helping to constrain models of mass transfer in Earth by mantle convection. Further, by dating when the diamonds formed, for example by dating of inclusions, we can effectively place time constraints in the geodynamic processes involved in diamond formation and uplift in the mantle. Inclusion-bearing diamonds suitable for study are very hard to come by. We are very fortunate to be in possession of several large suites (over 200 inclusion-bearing diamonds in all!) of diamonds from kimberlite pipes in the famous Juina region of Brazil, a region known for its superdeep diamonds. Our previous study on diamonds from the Juina region has yielded some fascinating results, and has led to a model of material recycling beneath Brazil that we have recently published in the journal Nature and in Contributions to Mineralogy and Petrology. We now wish to extend our investigations by studying new suites of diamonds from Juina to test our current model, and to make high-pressure temperature experiments that will allow us to determine at what depths the inclusions formed and equilibrated, and will provide information needed to constrain the rates at which diamonds were transported in the solid-state mantle, possibly in a mantle plume. Here, we propose a three-year project for a comprehensive mineralogical, geochemical, isotopic and experimental investigation of these unique diamonds and their mineral inclusions.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::396f3a68632f66439a55121da7a20864&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::396f3a68632f66439a55121da7a20864&type=result"></script>');
-->
</script>
This proposal seeks to quantify the water content of parental mafic magmas in arcs, using a new method involving the measurement of H+ and Al in pyroxenes. The method utilises the linear relationship between the melt-pyroxene partition coefficient for water, and the Al content of the pyroxene, as determined experimentally. In the past, this method has been applied primarily to mantle xenoliths for inferring the water content of the mantle, with the exception of one study which looked at volcanic rocks from Central America. At Soufriere Hills Volcano and many other intermediate-silicic volcanoes in arc settings, mafic intrusion is thought to trigger and sustain eruptions. At SHV, the mafic magma supplies sulphur and heat to the crystal-rich resident andesite, provoking convective self-mixing and eruption. Gas emissions and ground deformation datasets all point to intrusion of magma at 6-12 km depth, and petrological studies show streaked and banded andesites, or rounded enclaves in the erupted products, suggesting that 'mingling', rather than mixing occurs between the two end member magmas. If the intruding magma has a high volatile content, it will supply a significant vapour phase to the system on quenching and degassing at the interface between the magmas. Magma with a high fluid content is highly compressible, damping ground deformation signals. Sulphur partitions strongly into vapour at depth in oxidised systems, so a high fluid content has a higher potential for 'stripping out' sulphur from the melt, segregating it and allowing it to migrate to the surface or to cause explosive eruption. This proposal seeks to compare pyroxenes from mafic magma (which occurs as enclaves) with those from the resident andesite, to assess the pre-eruptive H2O contents of both end member magmas and further, to evaluate whether it is possible to assess melt water contents through time using profiles across the pyroxenes and accounting for diffusive loss. The results will have broad implications for arc magmas in general.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::966bfb5b30489db675ee45f96fd2edd6&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::966bfb5b30489db675ee45f96fd2edd6&type=result"></script>');
-->
</script>
This aim of this research programme is to understand better the evolution of the small bodies of rock and ice that lie in the outer parts of the solar system. These bodies are collectively called 'planetesimals', and are of great interest to planetary scientists because they have remained unchanged for most of the 4,500 million year history of the solar system. Thus, they can tell us much about how it formed and developed. This research project is concerned with planetesimals that contained liquid water, probably for a brief period soon after their formation. Pieces of these planetesimals have fallen to Earth as meteorites called 'carbonaceous chondrites', which are highly valued by scientists because their chemical compositions indicate that they are least altered rocks available for study. However, despite their very primitive chemistry, the carbonaceous chondrites are made mainly of minerals that were formed by water reacting with their parent planetesimal, and this process of aqueous alteration would be expected to have also modified the chemical composition of the rock. This contradiction between a primitive chemistry and secondary mineralogy can only be explained if water within the planetesimal was static. However, recent computer simulations of planetesimal evolution consistently predict that only the smallest bodies could have contained static water and in most it must have flowed through the rocks, modifying their chemical compositions along its path. In this research programme we will test the assumptions and predictions of these models by obtaining new information on the behavior and history of water within planetesimals using one group of carbonaceous chondrites called the CMs. These meteorites contain small crystals of minerals called carbonates that crystallized from the water. By examining the compositions, internal structures and distributions of carbonate crystals using a range of microscope-based techniques, we will address the following questions: Was the water stationary or did it flow in the same way that hot water moves through rocks on Earth? Did the water exist for only a brief period in a small body or was it present for millions of years within a larger planetesimal? Did planetesimal interiors contain water or was it present only close to their surface? Results of this research will increase our understanding of how planetesimals formed and evolved and will enable us and other scientists to assess and potentially modify the computer models of planetesimal interiors. Ultimately this work is significant for our understanding of the early history of the solar system but also of the present-day composition and internal structure of comets and asteroids. These bodies are currently the focus of a great deal of international research activity, having been visited recently by several space probes, and are targets for future unmanned and possibly manned exploration.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a6c22626684632215ac790a58e7cfa65&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a6c22626684632215ac790a58e7cfa65&type=result"></script>');
-->
</script>
In this consortium scientists from three UK institutions have come together to explore the development of rocky bodies within our solar system, and particularly in relation to the presence and properties of the key ingredients for life, namely water and carbon-rich molecules. One focus of our work will be on asteroids, samples of which have come to Earth as meteorites. These objects formed very early in the history of the solar system and evolved quickly, probably driven by internal heat from the decay of radioactive chemical elements. We want to know where in the solar system some of these asteroids formed, how long it took them to grow and how quickly they cooled down. We would also like to understand how heating and cooling affected water and carbon-rich molecules that became incorporated into the asteroids as they grew. These questions will be answered by using isotope analysis to determining the ages of different types of minerals, and by studying changes to the structure of carbon-rich compounds with laser beam techniques. Results from this work will provide new understandings of the evolution of asteroids that can be used to help interpret samples of them that will soon be returned to Earth by robotic missions. We will also study meteorites from Mars. This planet is an intermediate stage in evolution between the asteroids, which 'died' as they lost their heat and liquid water thousands of millions of years ago, and the Earth that remains an active planet with internal heat, liquid water and complex carbon-rich molecules including life. The Martian meteorites that we will analyse formed about 1300 million years ago when the planet was still hot enough that parts of its outer surface could melt, and they preserve traces of liquid water that flowed through the rocks. By studying the minerals in these rocks and the chemical elements from which they are made, we will explore how crystals grew as the molten rock cooled, and will also determine when the water was present. Today the surface of Mars is very hostile to life, with extremes of temperature, little or no liquid water and intense irradiation by ultraviolet light. However, brief occurrences of water on the surface of Mars today, and past hot-spring sinter deposits, may contain evidence of life, yet their propensity to do so is poorly understood. As sending robotic geologists to Mars is very costly, we will discover whether these environments can harbor molecular signs of life by studying martian analogue sites in the mountains of Chile. Soils in these areas are very dry, their temperatures fluctuate over a wide range and they are bathed in ultraviolet light. We will try to find traces of past life in these soils, and we will explore molecular preservation further by simulating martian conditions in the laboratory. This new information will tell us where on Mars we should focus the search for traces of life during future robotic and manned missions. The results of this research will be made freely available to other scientists worldwide so that improved models of planetary evolution can be developed. These new data and models will then help to guide the future exploration of asteroids and Mars, including the exciting missions in the next few tens of years that will return samples to Earth. Our research will also be of interest to scientists who study the history of the Earth, its climate and its life, and to industry through the new analytical procedures and technologies that we will develop. As our work will explore new and exciting science topics, it will be of great interest to the public and will be communicated via science festivals, newspapers and social media.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f68b74c8694f81b5ff633923edeea177&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f68b74c8694f81b5ff633923edeea177&type=result"></script>');
-->
</script>