The HELENUS project will build, integrate and demonstrate a 500kW solid oxide fuel cell (SOFC) module operating in cogeneration (combined heat and power) mode, in an MSC World class series ocean cruise vessel. The SOFC will be fully integrated- spatially, electrically, and thermally- into the ship design. SOFCs are the most efficient chemical energy converters available today, and are also highly fuel-flexible- thereby remaining highly relevant for the future of waterborne transport. The HELENUS demonstrator will achieve a TRL of 7 at the end of the project, with extended field testing already planned to reach TRL8 by 2028-2029. Success of this project will enable upscaling of mature SOFC technology in ocean cruise liners to as high as 20MW, by as early as 2029. This can unlock over 23% total fuel savings (assuming a hybrid 20MW SOFC+60MW ICE energy system) over a state-of-the-art energy system with only ICEs. The HELENUS consortium involves diverse and accomplished stakeholders representing the entire value chain from technology development to field implementation- creating a rapid pathway towards exploitation and commercialisation. HELENUS will also undertake extensive simulation, experimental (using an 80kW scaled-down SOFC module), and analytical efforts to demonstrate the applicability of the developed SOFC solution (i) upon significant scale-up (10 MW and beyond), (ii) over duty cycles of alternate applications such as dredging- and offshore- vessels, and (iii) using carbon-neutral fuels with potential for future maritime uptake. Experimental results will be complemented by application case- and lifecycle performance- analyses to assess the broader impact of the technology on waterborne transport. Therefore, HELENUS creates a technological and regulatory roadmap towards a maritime future with scaled-up clean energy systems operating on renewable fuels – thereby fostering innovation and significantly boosting the competitiveness of the EU maritime industry
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::ddc12658363be9e7447374434a0cbb90&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::ddc12658363be9e7447374434a0cbb90&type=result"></script>');
-->
</script>
A key EU policy aims to reduce the Union dependency on raw materials imports, in particular (candidate) Critical Raw Materials that are vital for the EU innovative technologies. Topic SC5-11c-2015 scope focuses on “developing new highly-automated technological sustainable solutions for deep mining … in the sea bed combined with in-situ processing of minerals”. An existing but challenging raw material resource concerns polymetallic nodules. These round to elongated concretions of 1–15 cm diameter form on sediment-covered deep-sea plains in all oceans between 4-6000m water depth. The challenge to harvest and transport the nodules to the EU shore is taken on by Blue Nodules. The governing project principle is: industrial viability within the context of a realistic and technical, economic and environmentally balanced business case for the complete Polymetallic Nodules value chain of mining, processing and valorisation. Blue Nodules will develop and test to TRL6 maturity a new highly-automated and technologically sustainable deep sea mining system. Key features are: an annual production capability of 2 Million Tons nodules in water depths up to 6000m, in-situ processing of the nodules and intrinsic safe working conditions. Technical WPs are dedicated to subsea harvesting equipment & control technology, in-situ seafloor processing of polymetallic nodules and sea surface, land operations & processes. A dedicated WP focuses on environmental issues and on an Environmental Impact Assessment (EIA). A WP setting requirements and assessing the developed technology controls the entire work plan structure. High credibility is obtained by linking the project work to a nodule field licence owned by a project partner and located in the most promising known nodule deposit: the Clarion Clipperton Zone. The project consortium contains 14 leading industry and research partners from 9 EU member states. The project duration is 48 months, the required funding amounts to 8 Million.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::16eba79a6b47cd3cfd3cd50c86e7dc91&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::16eba79a6b47cd3cfd3cd50c86e7dc91&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::0a3b610e656bec774bb8cbf6d2617ac5&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::0a3b610e656bec774bb8cbf6d2617ac5&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::e196c7e51c5d4d87249c906030ecf99b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::e196c7e51c5d4d87249c906030ecf99b&type=result"></script>');
-->
</script>