Powered by OpenAIRE graph
Found an issue? Give us feedback

AALTO

AALTO-KORKEAKOULUSAATIO
Country: Finland
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
567 Projects, page 1 of 114
  • Funder: European Commission Project Code: 723172
    Overall Budget: 2,248,060 EURFunder Contribution: 1,499,810 EUR

    5G!Pagoda represents the next evolution step in softwarized networks as supported by NFV, SDN and aimed at by the 5G network evolution. The top objectives of 5G!Pagoda are i) the development of a scalable 5G slicing architecture towards supporting specialized network slices composed on multi-vendor network functions, through the development of ii) a scalable network slice management and orchestration framework for distributed, edge dominated network infrastructures, and convergent software functionality for iii) lightweight control plane and iv) data plane programmability and their integration, customization, composition and run-time management towards different markets in Europe and Japan. 5G!Pagoda will develop a coherent architecture enabling research and standardization coordination between Europe and Japan. The proposed developments integrate with a common SDN/NFV based architecture and will additionally provide punctual and highly important developments of the software network architecture. The developments address the next steps of the evolution beyond the immediate NFV standardization and developments, enabling the graceful integration within end-to-end network slices of various highly customized software components, remotely controlling the data path, with specific network function flexibility and network function placement support and easy to manage through a convergent set of scalable orchestration APIs. Besides the technological aspects, 5G!Pagoda will develop a coherent proof of concept with two playground nodes, one in Japan and one in Europe, using a uniform network orchestration and a set of in-slice software features enabling the transparent exchange of knowledge and practical implemented components for dynamic deployment and execution of virtual network functions and applications. The testbed will allow practical demonstration of the functionality and will enable the development of an aligned 5G-oriented standardization roadmap for Japan and Europe

    more_vert
  • Funder: European Commission Project Code: 257448
    more_vert
  • Funder: European Commission Project Code: 317532
    more_vert
  • Funder: European Commission Project Code: 755039
    Overall Budget: 6,524,700 EURFunder Contribution: 4,000,000 EUR

    The main goal of M4F project is to bring together the fusion and fission materials communities working on the prediction of microstructural-induced irradiation damage and deformation mechanisms of irradiated ferritic/martensitic (F/M) steels. M4F project is a multidisciplinary one, were both modeling and experiments at different scales will be integrated to foster the understanding of complex phenomena associated to the formation and evolution of irradiation induced defects and their role on the deformation behavior. In addition, an attempt to reduce the gap between the materials science activities as model and experiments, and the needed inputs on design codes will be included

    more_vert
  • Funder: European Commission Project Code: 871668
    Overall Budget: 5,999,500 EURFunder Contribution: 5,999,500 EUR

    TERAWAY will develop a disruptive generation of THz transceivers that can overcome the current limitations of THz technology and enable its commercial uptake. Leveraging optical concepts and photonic integration techniques, TERAWAY will develop a common technology base for the generation, emission and detection of wireless signals within an ultra-wide range of carrier frequencies that will cover the W (92-114.5 GHz), D (130-174.8 GHz) and THz band (252-322 GHz). In this way, the project will provide for the first time the possibility to organize the spectral resources of a network within these bands into a common pool of radio resources that can be flexibly coordinated and used. In parallel, the use of photonics will enable the development of multi-channel transceivers with amplification of the wireless signals in the optical domain and with multi-beam optical beamforming in order to have a radical increase in the directivity of each wireless beam. At the end of this development, TERAWAY will make available a set of truly disruptive transceivers including a 2- and a 4-channel module with operation from 92 up to 322 GHz, data rate per channel up to 108 Gb/s, transmission reach in the THz band of more than 400 m, and possibility for the formation of wireless beams that can be independently steered in order to establish backhaul and fronthaul connections between a set of fixed and moving nodes. TERAWAY will evaluate these transceivers under an application scenario of communication and surveillance coverage of outdoor mega-events using moving nodes in the form of drones that will carry a gNB or the radio part of it. The network during the implementation of this scenario in the 5G testbed of AALTO will be controlled by an innovative SDN controller that will perform the management of the network and radio resources in a homogeneous way with large benefits for the network performance, energy efficiency, slicing efficiency and possibility to support heterogeneous services.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.