
MOEBIOS is an application of the circular (bio)economy concept: the development of three value chains incorporating separate recycling streams for bioplastics (BP’s) to improve waste management efficiency throughout Europe. It is a systemic innovation: it will create linkages addressed at the different key stages of the whole chains to solve a hierarchical challenge, from the collection of the bioplastic waste (simulated streams), up to the upcycling and validation of the final recycled end-products (holistic and coordinated solution). The new value chain will imply sorting, conditioning and valorising three types of waste streams from the packaging, agriculture and textile industries into three end-products, targeting to reach at least the same quality and functionality than the original grades, while the end users’ acceptance will be assessed as well. As cornerstone targets for maximizing project’s impact, the upscaling of the recycling processes will: (1) be integrated in pilot plants on the premises of actual industrial recycling lines currently operating in waste management companies, not disrupting them, and reaching a final TRL = 6/7 or even beyond. (2) focus on bioplastics for which recycling processes are still not in place, excluding bio-based analogues (“drop-ins”): PLA and PLA blends, PHA and its blends, PBS and PEF, accordingly with the market. The use of PBAT will be assessed as well. A Multi-Actor Approach (MAA) and a transdisciplinary methodology will engage waste producers, waste managers, bio-based and (bio)plastics industry, public authorities, standardization agencies, citizens and media multipliers, creating a co-creation and co-ownership innovation environment of + 50 participants.
iBot4CRMs is devoted to develop and pilot a self-learning robot integrating novel AI tools, data models and meticulous manipulations to enable recovery of critical raw materials (CRMs) from urban waste and dismantling end of life products. Wastes are manually sorted today by trained staff to remove hazardous materials before incineration and recover CRMs and magnets from crashed cars, electric motors, electronic waste and home appliances after manual dismantling. Current sorting machines face limitations in separating tons/hour of waste flow in only three streams maximum as they are not able to deal with large variability in waste such that effectivity still depends on heavy manual sorting. iBot4CRMs aims to build sorting robots that encompass handcrafting and intelligence to support human work in managing the unmanageable of recovering CRMs from urban waste in real-time. The robot system will integrate solutions that are re-usable from other sectors to converge senso-mechanical perception with evolutionary learning and flexible manipulation in a responsible research and innovation for effective dismantling and precise picking of CRMs from waste to improve circularity and impact on securing critical value chains for Europe. iBot4CRMs addresses four large scale pilots for recovery of CRMs in reals-settings at large end-users and industries in Spain, Portugal, Greece and Turkey, each of them comprising several technological validation scenarios, and facilitates collaboration between small and large companies towards enabling the scalability and wider exploitation of results. The project targets CRMs of high impact/volume in waste such as recovery and recycling of neodymium magnets by dismantling motors as well as recovering selected CRMs and removing hazardous materials by effective robot picking. iBot4CRMs has not only high scientific impact with such a technology that does exist today but will also open for opportunities to meet circularity and resilience in Europe.
The European plastic market is not currently aligned with the circular economy. More than 25.8 million tonnes of plastic waste are produced per year in the EU28 being recycled only 29.7%. This represents a clear loose in the plastic market loop (losses of €10.56bn). Moreover, this goes against the EU legislation on waste (high environmental impact; 23.8 Mt of CO2). Low recycling rates of plastic are mainly due to the situation of packaging waste (i.e. main plastic waste fraction), since it is mainly domestic residue and consequently the quality of the material collected depends on the system of segregation available and the environmental awareness of citizens. PlastiCircle aims to develop and implement a holistic process to increase recycling rates of packaging waste in Europe. This will allow to reprocess again plastic waste in the same value chain (i.e. Circular economy; closure of plastic loop). This process is based on four axes: collection (to increase quantity of packaging collected), transport (to reduce costs of recovered plastic), sorting (to increase quality of recovered plastic), and valorization in value-added products (i.e. foam boards, automotive parts like engine covers/bumpers/dashboards, bituminous roofing membranes, garbage bags, asphalt sheets/roofing felts and urban furniture like fences/benches/protection walls). The target is to increase collection from 81.7% to 87% and valorization in a 9.8%. The implementation of PlastiCircle approach in Europe have the potential to increase collected plastic in 861,250t (reaching 14.14 Mt) and valorization in 1.59Mt. The valorization of this new material, represents a market value of €2.86bn-€7.95bn. Taking into account current figures of the plastic sector (turnover €350bn, 62,000 companies, 1.45M employees), this could imply creation of 500-1400 new companies and the generation of 11,900-33,000 new jobs in the medium to long term if PlastiCircle approach is extended in a EU level.
The amount of Municipal Solid Waste (MSW) in the EU28 reached 245 million tons in 2012. Nowadays, Europe directives for waste management are more restrictive each year (e.g Landfill Directive 1999/31/EC), but unfortunately, landfill disposal still represents 34% of total MSW generated. On the other hand, citizen awareness as well as the high fees operators pay for landfill disposal, have helped to greatly increase the percentage for recycling from 18% in 1995, to 42% in 2012. However, 40% of all the glass waste ends up in mixed MSW plants (which typically contain 7% of glass). Instead of being disposed of in selective-waste collection, it ends up in landfills or is composted/incinerated with the remnant waste. We have developed SEEGLASS, a high performance optical sorter based on computer vision and a pneumatic rejection system. Our aim is to solve this non-environmentally friendly problem, while also offering our end-users additional revenues with this recovered material, which is not being exploited now (49€/tn glass). In addition, extracting this glass, will allow the treatment plants to significantly reduce costs from waste disposal fees (50€/Tonne EU average and rising). Payback for customers is estimated in only 19 months. With this project we will (i) construct pre-conditioning process line, (ii) optimise our current SEEGLASS computer vision system as well as its mechanical and pneumatic design, to reach 80% glass recovery, with 99% purity, (iii) integrate both, the process line and the glass sorter solution into a demonstrator system, and (iv) validate its feasibility in-house with real MSW coming from different countries, as well as carry-out an 24/7 end-user validation. We, PICVISA, will be the first company to recover the glass fraction in refined MSW worldwide (the niche market exists worldwide) selling Turn-key installations or only SEEGLASS units, contributing to a disruptive change in the sector.