Powered by OpenAIRE graph
Found an issue? Give us feedback

DANMARKS METEOROLOGISKE INSTITUT

Country: Denmark

DANMARKS METEOROLOGISKE INSTITUT

69 Projects, page 1 of 14
  • Funder: European Commission Project Code: 870465
    Overall Budget: 2,288,910 EURFunder Contribution: 2,082,060 EUR

    The FORCOAST project addresses the topic “DT-SPACE-01-EO-2018-2020 COPERNICUS MARKET UPTAKE” which seeks to foster market development exploiting the value of Copernicus Earth Observation Products. FORCOAST aims to provide information services that offer high resolution water quality and met-ocean indicators in coastal and nearshore areas, to improve operation, planning and management of different marine activities in the sectors of wild fisheries, oystergrounds restoration, and bivalve mariculture. FORCOAST information products and services will be co-designed with stakeholders, thereby ensuring that these products and services are tailored to meet their needs. FORCOAST is developing, testing and demonstrating, in operational mode, novel Copernicus-based downstream information services that will incorporate Copernicus Marine, Land and Climate Services Products, local monitoring data and advanced modelling in the service. The services will integrate Copernicus Earth Observation Products with local models and other diverse data sources (local, regional or global) with ICT (enhancing new frontiers opened by web, and use of cloud) across the different market segments. FORCOAST will provide consistent coastal data products, based on a standardized data processing scheme. FORCOAST is supporting the concept of developing an advanced platform and cloud computing for Copernicus-based downstream services utilizing one of the DIAS systems. The availability and accessibility of data and derived products generated will stimulate their exploitation by a wide range of user communities in the targeted sectors. FORCOAST will provide those services in eight pilot service uptake sites covering five different regional waters (North Sea, Baltic Sea, Mediterranean Sea, Black Sea and the coastal Atlantic Ocean).

    more_vert
  • Funder: European Commission Project Code: 101060452
    Overall Budget: 5,486,890 EURFunder Contribution: 5,486,890 EUR

    OCEAN:ICE will assess the impacts of key Antarctic Ice Sheet and Southern Ocean processes on Planet Earth, via their influence on sea level rise, deep water formation, ocean circulation and climate. An innovative and ambitious combination of observations and numerical models, including coupled ice sheet-climate model development, will be used to improve predictions of how changes in the Antarctic and Greenland ice sheets impact global climate. It will make new circumpolar and Atlantic observations in observational gaps. It will assimilate these and existing data into improved ice sheet boundary conditions and forcing, producing new estimates of ice sheet melt and impacts on ocean circulation, including the Atlantic Meridional Overturning circulation. It will develop, calibrate and assess models used to predict the future evolution of the giant ice sheets. It will reduce the deep uncertainty in the impact of their melt on societally relevant environmental changes on decadal to multi-centennial time scales. OCEAN:ICE will assess the potential for passing ice sheet 'tipping points' and their consequences for ocean circulation and climate. OCEAN:ICE will raise the profile of European research through its extensive network of international collaborators, who provide scientific and logistical support. It will directly contribute to the All-Atlantic Ocean Research Alliance through observations, logistical collaboration and analysis. It will significantly advance the state-of-the-art in coupled ice sheet-climate modelling and directly contribute to international climate assessments such as the Intergovernmental Panel on Climate Change and World Ocean Assessment. It will link organically to European data centres to disseminate its data, following FAIR and INSPIRE principles. It will deliver improved assessments of European climate impacts from the melting ice sheets, with actionable risk and timescales, to policymakers and the public.

    more_vert
  • Funder: European Commission Project Code: 101082139
    Overall Budget: 10,499,400 EURFunder Contribution: 10,499,400 EUR

    The Copernicus Climate Change Service Evolution (CERISE) project aims to enhance the quality of the C3S reanalysis and seasonal forecast portfolio, with a focus on land-atmosphere coupling. It will support the evolution of C3S by improving the C3S climate reanalysis and seasonal prediction systems and products towards enhanced integrity and coherence of the C3S Earth system Essential Climate Variables. CERISE will develop new and innovative coupled land-atmosphere data assimilation approaches and land initialisation techniques to pave the way for the next generations of the C3S reanalysis and seasonal prediction systems. These developments will include innovative work on observation operators using Artificial Intelligence to ensure optimal data fusion integrated in coupled assimilation systems. They will enhance the exploitation of Earth system observations over land surfaces, including from the Copernicus Sentinels and from the European Space Agency Earth Explorer missions, moving towards an all-sky and all-surface approach. CERISE Research and Innovation will bring the C3S tools beyond the state-of-the-art in the areas of coupled land-atmosphere data assimilation, observation operators, and land initialisation methodologies. CERISE will develop diagnostic tools and prediction skill metrics that include integrated hydrological variables to go beyond the traditional skill scores to assess Earth system coupled reanalysis and seasonal prediction. It will deliver proof-of-concept prototypes and demonstrators, to demonstrate the feasibility of the integration of the developed approaches in the operational C3S. The CERISE outputs aim at medium to long-term upgrades of the C3S systems with targeted progressive implementation in the next three years and beyond. CERISE will improve the quality and consistency of the C3S reanalysis and multi-system seasonal prediction, directly addressing the evolving user needs for improved and more consistent C3S Earth system products.

    more_vert
  • Funder: European Commission Project Code: 244132
    more_vert
  • Funder: European Commission Project Code: 262584
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.