
The safety of a nuclear reactor relies heavily on modelling. In the last two decades, making use of the increased computer power available, advanced multi-physics solvers have been developed to reduce the level of conservatism when simulating pressurized water reactors. These tools rely on a first-principles based approach and produce solutions with a much finer spatial resolution. However they are seldom used in practice due to, amongst other things, the lack of dedicated experimental data for validation, especially when it comes to their improved spatial resolution. The EVEREST project intends to address this issue by quantifying the impact of using advanced MP models for the modelling of a VVER reactor ("usefulness"); by demonstrating the accuracy of their results, especially the improved resolution through the production of dedicated experimental data (“trustworthiness”); and by promoting them to key groups of the nuclear engineering community (students, utilities, regulators). The consortium is built around the necessary research facilities and expertise from all the required actors of the nuclear industry, both within Europe and outside. In terms of impact, the project will produce scientific knowledge towards producing electricity using a climate-neutral energy system, in a safe and efficient way. The advanced models will provide more accurate and detailed information about the current safety margins in nuclear reactors enabling more informed decisions on setting the regulatory limits; and resulting in an improvement of the plant safety as a whole. A better understanding of the safety margins for a nuclear power plant could also allow power uprate. The same approach can be envisioned for research reactors and allow more users to carry out research activities. Finally, the EVEREST project will have a long-term impact on knowledge preservation through the organization of a summer school and trainings as well as the funding of mobility grants.
Most mainstream approaches to quantum computing are limited by short qubit coherence times at a level that impedes the implementation of quantum error correction. A truly viable approach to achieving fault tolerant computation, and solving socially relevant problems, thus requires inherently better qubits. In this project, we propose to realize a new type of qubit based on a hybrid between superconductors and semiconductors – two leading platforms at this time. The qubit will be engineered such that the states of this qubit are immune to most decoherence mechanisms currently limiting mainstream implementations of a quantum computer. We plan to achieve this by encoding quantum information in a topologically protected system. Such a system will be engineered by creating arrays of quantum dots with superconducting coupling (the so called Kitaev chain) in two-dimensional electron gases (2DEGs). Embedding the Kitaev chain in a transmon architecture will allow us to perform single-qubit and two-qubit operations using well-established control-techniques from the field of superconducting qubits. Combining these control elements with record long qubit coherence times we expect high gate fidelities beyond the state of the art. The choice of using the 2DEG platform naturally lends itself to scalability in the longer term, and we plan to develop a clear roadmap for future scaling within the course of the project.
Our Vision With the European Joint Programme on Radioactive Waste Management EURAD(-1) a step change in European collaboration was envisaged towards safe radioactive waste management (RWM), covering all phases including predisposal and disposal, through the development of a robust and sustained science, technology and knowledge management programme that supports timely implementation of RWM activities and serves to foster mutual understanding and trust between Joint Programme participants. EURAD-2 builds upon EURAD-1 and PREDIS to further implement a joint strategic programme of research, development and knowledge management activities at the European level, bringing together and complementing EU Member States programmes in order to ensure cutting edge knowledge creation and preservation in view of delivering safe, responsible and publicly acceptable solutions for the management of radioactive waste throughout all programme phases (from “cradle to grave”) across Europe now and in the future. EURAD-2 will support the implementation of the Waste Directive in EU Member States, taking into account the various stages of advancement of national programmes, the differences in capabilities and inventories. The main goals are to: - Support Member States in developing and implementing their national RD&D programmes for the safe long‐term management of their full range of different types of radioactive waste through participation in the RWM Joint Programme; - Develop and consolidate existing knowledge for the safe start of operation of the first geological disposal facilities for spent fuel, high‐level waste, and other long‐lived radioactive waste, and supporting optimization linked with the stepwise implementation of geological disposal facilities; - Building on the achievements of EURAD-1 and PREDIS, maintain a knowledge management system that enhances transfer of knowledge between organisations, Member States and generations.
The overarching goal of PowerizeD is to develop breakthrough technologies of digitalized and intelligent power electronics, in order to enable sustainable and resilient energy generation, transmission and applications. PowerizeD enhances the level of mechanical and electrical integration of new driver circuits into power electronics and allows for the first time common optimization of all power switch functionalities. Regarding data sharing along the value chain, PowerizeD drives the novel approach of Federated Learning as a methodical approach to an intrinsically encrypted transfer of confidential and proprietary data. Also new is the usage of detailed electrical physical models in digital twins of real time digitally monitored and controlled power electronic devices. Unlike other projects focusing on competence and technology with limited effort on demonstration, this project will start from vital societal needs, by identifying and analyzing the key generic technology challenges from broad application scopes. Major effort will be spent on cross-domain research and innovation. The developed technologies will be demonstrated and evaluated via a large number of universally applicable results. To realize this ambition, a large project consortium will incorporate the needed competencies and resources along the whole value chain. 24 Large Entities, 19 Small Medium Enterprises and 22 research partners from 12 EU countries – representing the entire value chain from materials to “system of systems” – strive to demonstrate the applicability of these innovative approaches to multiple industrial domains. Among the concrete objectives are a 25% reduction or power losses, a device and system lifetime increase of 30%, a chip size reduction of at least 10% and a shortening of the design time by 50%. By this, PowerizeD addresses the three megatrends Independence, Sustainability and Digitalization, thereby opening pathways to massive economic and societal benefits for the EU.
SECURE project aims to make a major contribution to the sustainability of medical isotope production and its safe application in Europe. It is focusing on promising developments in the design of irradiation targets, production routes for existing and new isotopes in nuclear therapy and diagnostics. Isotopes critical in the success of nuclear medicine are selected and research activities are identified to address some of the major challenges in securing its future availability, with the objectives: 1. to remove critical barriers along the production of its selected alpha and beta emitting isotopes that restrict a sustainable production, 2. to develop a framework of guidance and recommendations that enables exploring the full clinical potential of alpha and beta particle therapy and its safe application 3. to provide important lessons learned that act as a demonstration case for addressing issues in upscaling and sustained isotope production. At present, Ra-223 is the only radiopharmaceutical which has been granted marketing authorization to treat adults with prostate cancer. This has paved the way for a wider use of other alpha emitters such as Ac-225 or Bi-213. The expected demand of nuclear medicine for novel alpha emitters and beta- emitters requires re-evaluation of their production methods and inventories of target materials and parent radionuclides. The ambition of SECURE consortium is to identify and efficiently use the current resources for new radionuclides, in particular for alpha emitters and the relevant beta emitting theranostic radionuclides. The development of alternative technologies for production of such therapeutic radionuclides for improved patient treatment requires multidisciplinary scientific and technological knowledge including physics, chemistry, material science, machining of target materials, chemistry, biology and radiobiology, radiopharmacy and nuclear medicine. All this chain of expertise is present in SECURE consortium.