Powered by OpenAIRE graph
Found an issue? Give us feedback

Hexcel

HEXCEL COMPOSITES LTD
Country: United Kingdom
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
24 Projects, page 1 of 5
  • Funder: European Commission Project Code: 218697
    more_vert
  • Funder: European Commission Project Code: 722096
    Overall Budget: 495,746 EURFunder Contribution: 495,746 EUR

    The main objective of the DYNACOM (Dynamic behaviour of composite materials for next generation aeroengines) training network is to set up a European Industrial Doctorate (EID) programme on the design of the next generation of structural composite materials for high strain rate applications. This will be achieved by the development of a consistent, physically based multiscale simulation strategy informed by the dynamic properties of the constituents (fibre, matrix and fiber/matrix interface) measured with a novel micromechanical testing methodology. Two of the major milestones of this EID are: (1) to offer early stage researchers (ESRs) a multidisciplinary and intersectorial training with the objective of establishing a new design paradigm in structural design of composite materials and (2) to provide the European industry with new tools towards a knowledge-base incorporation of composite materials into new components, without the need of inefficient and expensive traditional trial and error approaches. In this sense, the technological focus is put into the introduction of new composite components into the next generation of aeronautical engines, but the implications are numerous in other sectors where composite materials have been identified as a key enabling technology, such as in transport, energy generation and biomedical applications. To accomplish this, the programme brings together one research institution, two industrial partners, one academic institution and a non-profit organization. The joint academic and industrial training program offered by this EID will ensure that the innovative aspects of the research work find a quick industrial integration and will provide the early stage researchers with a truly interdisciplinary and intersectoral training, enhancing their employability and career perspectives.

    more_vert
  • Funder: European Commission Project Code: 686374
    Overall Budget: 350,012 EURFunder Contribution: 350,012 EUR

    NEODAMP is marked in the ITD Airframe part B, oriented to highly integrated innovative structural components, for the Large Passenger Aircraft. NEODAMP will develop new prepreg composite materials for structural purposes in the aircraft, able to support structural loads and other additional functions. The project is focused on acoustic damping and complemented with electrical conductivity studies while using techniques related to additional embedded and/or integrated functionality. Composite materials will be chosen among those provided by a widely experienced manufacturer, to meet the future needs and requirements given by the topic manager. Activities are distributed along 36 months, and tasks are associated to 3 main topics: material development, screening and process ability. In order to find the optimal material, a series of key characteristics will be selected, such as acoustic damping, structural and mechanical properties, HSE requirements, Fire, Smoke&Toxicity resistance for fuselage applications, resistance to environmental factors, automatic manufacturing and costs. The damping material will be improved and modified to adjusts properties such as tacking or curing parameters. All the cited features will be deeply studied through a test campaign, at coupon level using raw damping material and the embedded damping prepreg composite material. The wide variety of tests will include from damping behavior and vibro-acoustic performance to lightning strike protection, including aging, common mechanical properties and physicochemical tests. Needed panels and embedded design will be done and manufactured by the partners. Results of the cited works altogether will guide to the optimal design and manufacturing of trials, which will reach to material improvements also. The production of demonstrators will be oriented to automatic fuselage production by using automatic fiber placement techniques and always considering possible solutions for industrialization.

    more_vert
  • Funder: European Commission Project Code: 761072
    Overall Budget: 5,873,920 EURFunder Contribution: 5,873,920 EUR

    Society is dependent upon the continuous functioning of critical infrastructures such as road bridges and energy supply. These infrastructures are exposed to high loads and harsh environmental conditions through their lifetime in operation and materials failures lead to down time having vast negative effects on productivity and well-being in society in terms of lost time, shortened life cycles and increased service costs. So engineers face the challenge to develop durable materials compatible with industrial standards in an economically viable way. Composites represent attractive materials and are increasingly used for such applications since they demonstrate low weight, high strength and stiffness and high environmental resistance. However composites suffer from sudden brittle failure mainly due to production defects and handling damages; this is currently handled by strict quality and process control from manufacturers, resulting in high production costs which can represent a barrier to introduction and development of composites in a wide range of applications. The general objective of DACOMAT is to develop more damage tolerant and damage predictable low cost composite materials in particular aimed for used in large load carrying constructions like bridges, buildings, wind-turbine blades and off shore structures. The developed materials and condition monitoring solutions will enable composite structures to be designed and manufactured as large parts allowing for more and larger manufacturing defects and the need for manual inspection to be dramatically reduced. A demonstration of the materials’ performances in relevant environment will be conducted in two business cases: wind turbine blades and road bridge beams, while both LCC and LCA analysis will also strengthen the project’s credibility.The project gathers the full industrial value chain: ranging from materials development and manufacturing to composite parts demonstrators and standardisation.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M015319/1
    Funder Contribution: 375,124 GBP

    This proposal focuses on the impact performance of state-of-the-art composites in the form of fibre-reinforced plastics (FRPs) with through-thickness reinforcement introduced via Z-pinning. The application of composites in primary lightweight structures has been steadily growing during the last 20 years, increasing the requirement for new and advanced composites technologies. Recent examples include large civil aircraft, such as the Boeing 787 and the Airbus A350, high performance cars, such as the McLaren 650S, and civil infrastructure, such as the Mount Pleasant bridge on the M6 motorway. FRPs are made of thin layers (plies) of plastic material with embedded high stiffness and strength fibres. The plies are bonded together in a stack by applying heat and pressure in a process known as "curing". The resulting assembly is the FRP laminate. The main reasons for the increasing usage of FRPs in several engineering fields are the superior in-plane specific stiffness and strength with respect to traditional alloys and the long-term environmental durability due to the absence of corrosion. Another key advantage of FRPs is that they can be tailored to specific design loads via optimising the orientation of the reinforcing fibres across the laminate stack. FRPs are, however, prone to delamination, i.e. the progressive dis-bond of the plies through the thickness of the laminate. This is due to the fact that standard FRP laminates have no reinforcement in the through-thickness direction, so the out-of-plane mechanical properties are significantly lower than the in-plane ones. According to the US Air Force, delamination can be held responsible for 60% of structural failures in FRP components in service. Impacts are the main cause of delamination in FRP laminates with energies usually in the order of 20J, sufficient to produce multiple delaminations in FRP plates. A representative scenario for such energy level is that of a 2cm diameter stone impacting a laminate at a speed of 110 km/h. In aerospace impact scenarios can be much more severe. For example, the certification of turbofan engines requires the fan blades to be able to withstand an impact with a bird whose mass is in the order of a few kilograms at speed in excess of 300 km/h, with impact energies of thousands of Joules. Introducing through-thickness reinforcement in FRPs is a viable strategy for improving the through-thickness mechanical properties and inhibiting delamination. Z-pinning is a through-thickness reinforcement technique whereby short FRP rods are inserted in the laminate before curing. Z-pinning has been proven to be particularly effective in inhibiting delamination under quasi-static, fatigue loading and low velocity/low energy impact loading. Nonetheless, little is known regarding the performance of Z-pinned laminates withstanding high energy/high speed impacts, whose effects are governed by complex transient phenomena taking place within the bulk FRP laminates and multiple ply interfaces. Overall, these phenomena are commonly denoted as "high strain rate" effects. There is some evidence that Z-pinning is beneficial also for high-speed impacts, but this is not conclusive. The current lack of knowledge may be circumvented with overdesign and expensive large-scale structural testing, but this is not a sustainable solution in a medium to long-term scenario. This project aims to fill the knowledge gap outlined above, by combining novel experimental characterisation at high deformation rates with new modelling techniques that can be used for the design and certification of impact damage tolerant composite structures. The development of suitable modelling techniques is particularly important for industrial exploitation, since it will reduce the amount of testing required for certification of composite structures, with a significant reduction of costs and shorter lead times to mark

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.