
The TROPHY project, which stands for “Technological Research On Propulsion by HYdrogen”, aimed at supporting the Clean Aviation HYDEA funded project (HYdrogen DEmonstrator for Aviation), which proposes a technology maturation plan to develop an H2C (Hydrogen Combustion) propulsion system compatible with an Entry Into Service of a zero CO2 low-emission aircraft in 2035. TROPHY supported design activities related to the development of an H2 engine fuel system as well as the investigation of integration aspects between engine and aircraft. Decision was made by the consortium to close TROPHY grant agreement as it turned out that key objectives as initially envisaged were no longer relevant.
Engines ITD will work towards radical engine architectures and new engine technologies to power the aircraft of the future. The objective is to increase fuel and energy efficiency of the engine and reduce environmental impact, regardless of whether the engine is powering a large airliner or just a small utility aircraft, meaning more thrust while burning less fuel and emitting less CO2, NOx and noise.
The Engines ITD will work towards radical engine architectures and new engine technologies to power the aircraft of the future. The objective is to increase fuel and energy efficiency of the engine and reduce environmental impact, regardless of whether the engine is powering a large airliner or just a small utility aircraft, meaning more thrust while burning less fuel and emitting less CO2, NOx and noise.
The HYDEA project, which stands for “HYdrogen DEmonstrator for Aviation”, proposes a robust technology maturation plan to develop an H2C (Hydrogen Combustion) propulsion system compatible with an Entry Into Service of a zero-CO2 low-emission aircraft in 2035, consistently with the expected timeframe of the European Green Deal and CA SRIA objectives. The project aims to address fundamental questions related to the use of hydrogen as an aviation fuel, concentrating on the development and testing in relevant conditions of an H2 combustor and H2 fuel system, also including emission studies and further technologies which will serve as an outlook to future engines, i.e. NOx optimization studies, potential contrails emissions and investigating integration aspects between engine and aircraft. HYDEA results will be core for the ZEROe technology exploration project, launched by Airbus in 2020. The revolutionary technologies in scope call for an early engagement and dialogue with EASA (European Union Aviation Safety Agency) within HYDEA, starting from phase 1.
Reducing SMR aircraft environmental impact is a priority of the Clean Aviation SRIA, which objective is to have technologies ready for the future generation of SMR aircraft. The engine is key in this effort and the Open Fan engine architecture is the most promising solution in terms of fuel efficiency to both achieve environmental goals (20% emissions reduction versus 2020) and target a rapid Entry into Service, as early as 2035. In synergy with national programs, OFELIA will gather a large European consortium to contribute to the RISE technology demonstration announced in June 2021. OFELIA aims to demonstrate at TRL5 the RISE Open Fan architecture, for the SMR to achieve or surpass the Air Transport Action Group’s goals on the way towards Carbon neutrality by 2050. To this end, OFELIA will focus on this high TRL full scale demonstration of the engine architecture and on the development of key enablers for the Open Fan. OFELIA will allow installation of an increased fan diameter on a conventional aircraft configuration, thanks to innovative turbomachinery technical solutions. Following the architecture definition, OFELIA will perform a large-scale Open Fan engine ground test campaign, deliver flightworthy propulsive system definition and prepare an in-flight demonstration for the phase 2 of Clean Aviation. The project will also optimize the engine installation with the airframer and address certification, in close collaboration with airworthiness authorities, taking advantage of the permit-to-fly activity. OFELIA will then deliver a TRL5 Open Fan engine architecture for SMR, demonstrate a credible path to 20% CO2 reduction versus 2020 and prepare the path to flight tests to consolidate the roadmap for EIS2035. As part of the technology maturation plan, the compatibility of Open Fan to hydrogen will be investigated in coordination with H2 pillar.