The Space@Sea project aims to develop multi-use platforms with the objective to develop safe and cost efficient deck space at sea. Due to the increasing population and scarce usable space on land, there is an increasing need for sustainable food and renewable energy from the ocean. In the future these will be supplied more and more by fish- and seaweed farms and ocean energy(floating) wind turbines. There are also geographical locations where additional housing or logistic hubs are needed. All these developments need a flexible and scalable concept that can support a multitude of activities at sea. Space@Sea consists of a group of companies, research institutes and universities that will develop a modular concept for multi-use platforms. Standardised floaters that can be produced at low cost will form the basis. The approach will reduce the cost through standardisation in a similar way that containers reduced the cost of transport in the past. Each floater can support a different function, such as: housing, renewable energy hub, aquafarming (seaweed, algae and fish farms) and logistics equipment. By combining the applications in different ways, Space@Sea will form islands according to the specifications for the location and function at hand. Three specific islands will be validated and demonstrated as part of Space@Sea: An energy hub in the North Sea, aquaculture in the Mediterranean and a floating logistics hub in the Black Sea. To develop a safe and economically viable floating island, a floater need to be developed that can meet the requirements of the various applications and environmental conditions. At the same time these requirements will be brought together into a standardized design. Technology developments are required for the floater, the shared mooring system, coupling between the floaters and application specific developments. The Space@Sea consortium aims to overcome these challenges for a sustainable and cost efficient development of our oceans.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::90f840f5e0afcf2b34138b18d0ec189b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::90f840f5e0afcf2b34138b18d0ec189b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::7ca845cdc32003203fefe615bf1d07d6&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::7ca845cdc32003203fefe615bf1d07d6&type=result"></script>');
-->
</script>
The MAGPIE consortium, consisting of 4 ports (Lighthouse Port of Rotterdam, Fellow ports DeltaPort (inland), Port of Sines and HAROPA), 9 research institutes and universities, 32 private companies and 4 other institutes, forms a unique collaboration addressing the missing link between green energy supply and green energy use in port-related transport and the implementation of digitisation, automation, and autonomy to increase transport efficiency. MAGPIE accelerates the introduction of green energy carriers (batteries, hydrogen, ammonia, BioLNG and methanol) combined with realisation of logistic optimisation in ports through automation and autonomous operations. The main objective of MAGPIE is to demonstrate technical, operational, and procedural energy supply and digital solutions in a living lab environment to stimulate green, smart, and integrated multimodal transport and ensure roll out through the European Green Port of the Future Master Plan and dissemination and exploitation activities. A living lab approach is applied in which technological and non-technological innovations are developed or demonstrated. Innovations demonstrated are: On-site BioLNG production; Smart Energy Systems; Shore power peak shaving; Port digital twin (GHG tooling and energy matching); Ammonia bunkering; Offshore charging buoy; Autonomous e-barge and transhipment; Green energy container for inland shipping; Hybrid shunting locomotive; Green connected trucking; Spreading of road traffic; Non-technological innovations to increase the use of green energy. Demonstrators will lead into the Master Plan for the European Green including a roadmap and handbook for implementation. To increase the reach and exploitation of the project results, stakeholders will be in the project through stakeholder consultation groups, targeted communication and dissemination activities. Technical collaborations will be set up with other actions to multiply the results of MAGPIE and of the other actions.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a4f5057d4c60700399efc9803fa0960a&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a4f5057d4c60700399efc9803fa0960a&type=result"></script>');
-->
</script>