Powered by OpenAIRE graph
Found an issue? Give us feedback

CEINNMAT

INNCEINNMAT SL
Country: Spain
11 Projects, page 1 of 3
  • Funder: European Commission Project Code: 309451
    more_vert
  • Funder: European Commission Project Code: 958302
    Overall Budget: 12,839,000 EURFunder Contribution: 11,210,500 EUR

    PEACOC will showcase a first-of-a-kind economically and environmentally viable pre-commercial metallurgical system for recovering Precious Metals (PMs) (i.e. Platinum Group Metals (PGMs) identified as critical raw materials by the European Commission (EC), as well as gold (Au) and silver (Ag)), highly important for the EU economy, from a wide variety of abundant end-of-life (EPEACOC will showcase a first-of-a-kind economically and environmentally viable pre-commercial metallurgical system for recovering Precious Metals (PMs) (i.e. Platinum Group Metals (PGMs) identified as critical raw materials by the European Commission (EC), as well as gold (Au) and silver (Ag)), highly important for the EU economy, from a wide variety of abundant end-of-life (EoL) products in Europe. The concept is mainly based on previously developed recovery and refining technologies to TRL 5 in the PLATIRUS Research and Innovation project (Micro-Wave assisted leaching and Gas Diffusion Electrocrystallization GDEx), which were flagged by the Innovation Radar initiative of the EC as excellent innovations and showed a significant cost reduction and lower environmental impact compared to state-of-the-art hydrometallurgical processes as will be shown throughout the proposal. The PEACOC system will be demonstrated at pre-commercial scale at TRL7 with capacity to treat ~50t of PMs concentrates/year i.e., with a recovery capacity of i)2 kg PGMs/week from spent autocatalysts (containing ~2.5kg PGMs/t), ii) 0.5-1 kg Au/week from Printed Circuit Board Assembly (PCBA) with a focus on low and medium grade PCBA (containing 20-100 g Au/t) that are currently poorly valorized in industrial smelting processes due to low PM concentrations, and iii) 10 kg Ag/week from EoL Photovoltaic (PV) panels (containing ~3-10 kg Ag/t) which will be an abundant resource in Europe in the coming few years. The project will demonstrate the production of PMs at a profit margin up to 80% with respect to current PMs market prices.

    more_vert
  • Funder: European Commission Project Code: 314636
    more_vert
  • Funder: European Commission Project Code: 101091960
    Overall Budget: 6,055,720 EURFunder Contribution: 4,985,620 EUR

    Growing demand for high quality iron ores and scrap as well as abandonment of carbon intensive sintering in the future require novel technological approaches for upgrading of low-grade iron ores and recycling of mill scale. TransZeroWaste will apply hydrometallurgy for mill scale de-oiling and use this iron-rich scrap equivalent to upgrade low-grade iron ores. For that, TransZeroWaste will develop low carbon technologies such as cold pelletising and briquetting, hot microwave pelletising, and magnet-supported hydrometallurgy from TRL 6 to TRL 8. The developed technologies will be transferable to further material flows such as dusts and sludges. On European level, the expected impact will be the potential upgrade of over 18 million t/a low-grade iron ore, up to 6 million t/a mill scale and 3 million t/a pellet sieving residue. Total impact of TransZeroWaste will include upgrading of 27 million t/a materials with low carbon technologies and avoiding of corresponding sinter plant carbon footprint of 4,3 – 9,9 MtCO2/a. Technological competences and know-how are owned by the participating partners from the applied research. They will be developed and transferred to the two industrial partners with 9 production sites. Thoroughly planned dissemination and exploitation activities will ensure effective implementation of technologies after project end. Life cycle assessment and economic evaluation will be performed; sustainable business models will be developed. Furthermore, a decision support platform for industrial users will be installed. In combination with workshops and trainings it will help to find and implement the best upgrading technology for various low-grade materials considering environmental and economic aspects. TransZeroWaste will serve as a vehicle for the transition of the European steel industry to the carbon free zero waste future.

    more_vert
  • Funder: European Commission Project Code: 820783
    Overall Budget: 8,442,000 EURFunder Contribution: 7,058,010 EUR

    The DESTINY project aims to realize a functional, green and energy saving, scalable and replicable solution, employing microwave energy for continuous material processing in energy intensive industries. The target is to develop and demonstrate a new concept of firing granular feedstock for materials transformation using full microwave heating as alternative and complement to the existing conventional production. The DESTINY system is conceived as cellular kilns in mobile modular plant, with significant advantages in terms of resource and energy efficiency, flexibility, replicability and scalability with reduced environmental footprint. The DESTINY concept will be proved in a demo site located in Spain, covering high energy demanding sectors of strategic interest as Ceramic (Pigments), Cement (Calcined clay) and Steel (Sinter, Iron Pellets/DRI, ZnO), to validate the critical parameters of the developed technology in relevant environment (TRL 6). It will be implemented with 2 feeding modules and 1 mobile microwave kiln module and product treatment. Influence of the DESTINY solutions in terms of stability, process efficiency and characteristics of raw materials, intermediate/sub/final products will be investigated to improve performance of the industrial processes addressed and guarantee the required quality of products. Numerical simulation tools will be used to drive the design and support the testing activities The industrialization and sustainability of DESTINY high temperature microwave technology will be assessed through the evaluation of relevant KPIs, with Life Cycle Methodologies. With the final aim of ensuring a large exploitation and market penetration for DESTINY, technology-based solutions business model, economic viability and replicability analysis will be conducted. For guaranteeing industrial transferability appropriate exploitation and dissemination activities have been defined during and even after the end of the project.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.