Powered by OpenAIRE graph
Found an issue? Give us feedback

FICUS

FUNDACION DE INVESTIGACION DEL CANCER DE LA UNIVERSIDAD DE SALAMANCA
Country: Spain
6 Projects, page 1 of 2
  • Funder: European Commission Project Code: 306242
    more_vert
  • Funder: European Commission Project Code: 201862
    more_vert
  • Funder: European Commission Project Code: 278742
    more_vert
  • Funder: European Commission Project Code: 223411
    more_vert
  • Funder: European Commission Project Code: 847912
    Overall Budget: 6,283,250 EURFunder Contribution: 6,000,000 EUR

    Breast Cancer (BC) is the first cause of cancer-related death in women worldwide. Breast cancer is classified into well-recognized molecular subtypes. Despite solid pre-clinical evidence, only some patients benefit from administering drug combinations, an indication that patient and tumor heterogeneity is still present in the current stratification. Out of the numerous possible combinations of approved drugs, only a few have been actually tried, and the choice of tested combinations has been to some degree arbitrary. This proposal seeks to develop new approaches and identify mechanisms of treatment resistance at systems level, exploring how the effectiveness of specific targeted therapies applied in different clinical trials is affected by patient- and tumor-specific conditions. For this purpose, the project will gather and integrate longitudinal multidimensional data from ongoing clinical trials and newly generated --omics using systems approaches, which combine sub-cellular/cellular and/or organ level in-silico models and network analysis to build computational frameworks able to discover molecular signatures of resistance and predict patient response to combinatorial therapies. We aim to identify the physiological characteristics of non-responders vs. responders from existing and newly generated multi-omic data and biological samples from in-vivo and ex-vivo clinical studies of specific subtypes of BC patients treated with combination therapy. This new knowledge will be used to investigate the curative potential of new personalized drugs combinations. The overreaching goal is to develop computer “xenograft model” as a cost-efficient and better alternative in terms of ethics, availability to everyone, and animal use. The framework will include optimization algorithms to identify combinations of approved drugs with a high probability to work on individual or thin strata of patients. The project is endowed with a “legal” framework addressing ethical aspects

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.