Powered by OpenAIRE graph
Found an issue? Give us feedback

NTNU (Norwegian Uni of Sci & Technology)

NTNU (Norwegian Uni of Sci & Technology)

12 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/H009612/1
    Funder Contribution: 5,814,410 GBP

    Reducing carbon emissions and securing energy supplies are crucial international goals to which energy demand reduction must make a major contribution. On a national level, demand reduction, deployment of new and renewable energy technologies, and decarbonisation of the energy supply are essential if the UK is to meet its legally binding carbon reduction targets. As a result, this area is an important theme within the EPSRC's strategic plan, but one that suffers from historical underinvestment and a serious shortage of appropriately skilled researchers. Major energy demand reductions are required within the working lifetime of Doctoral Training Centre (DTC) graduates, i.e. by 2050. Students will thus have to be capable of identifying and undertaking research that will have an impact within their 35 year post-doctoral career. The challenges will be exacerbated as our population ages, as climate change advances and as fuel prices rise: successful demand reduction requires both detailed technical knowledge and multi-disciplinary skills. The DTC will therefore span the interfaces between traditional disciplines to develop a training programme that teaches the context and process-bound problems of technology deployment, along with the communication and leadership skills needed to initiate real change within the tight time scale required. It will be jointly operated by University College London (UCL) and Loughborough University (LU); two world-class centres of energy research. Through the cross-faculty Energy Institute at UCL and Sustainability Research School at LU, over 80 academics have been identified who are able and willing to supervise DTC students. These experts span the full range of necessary disciplines from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. The reputation of the universities will enable them to attract the very best students to this research area.The DTC will begin with a 1 year joint MRes programme followed by a 3 year PhD programme including a placement abroad and the opportunity for each DTC student to employ an undergraduate intern to assist them. Students will be trained in communication methods and alternative forms of public engagement. They will thus understand the energy challenges faced by the UK, appreciate the international energy landscape, develop people-management and communication skills, and so acquire the competence to make a tangible impact. An annual colloquium will be the focal point of the DTC year acting as a show-case and major mechanism for connection to the wider stakeholder community.The DTC will be led by internationally eminent academics (Prof Robert Lowe, Director, and Prof Kevin J Lomas, Deputy Director), together they have over 50 years of experience in this sector. They will be supported by a management structure headed by an Advisory Board chaired by Pascal Terrien, Director of the European Centre and Laboratories for Energy Efficiency Research and responsible for the Demand Reduction programme of the UK Energy Technology Institute. This will help secure the international, industrial and UK research linkages of the DTC.Students will receive a stipend that is competitive with other DTCs in the energy arena and, for work in certain areas, further enhancement from industrial sponsors. They will have a personal annual research allowance, an excellent research environment and access to resources. Both Universities are committed to energy research at the highest level, and each has invested over 3.2M in academic appointments, infrastructure development and other support, specifically to the energy demand reduction area. Each university will match the EPSRC funded studentships one-for-one, with funding from other sources. This DTC will therefore train at least 100 students over its 8 year life.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V011855/1
    Funder Contribution: 4,436,180 GBP

    The Circular Economy (CE) is a revolutionary alternative to a traditional linear, make-use-dispose economy. It is based on the central principle of maintaining continuous flows of resources at their highest value for the longest period and then recovering, cascading and regenerating products and materials at the end of each life cycle. Metals are ideal flows for a circular economy. With careful stewardship and good technology, metals mined from the Earth can be reused indefinitely. Technology metals (techmetals) are an essential, distinct, subset of specialist metals. Although they are used in much smaller quantities than industrial metals such as iron and aluminium, each techmetal has its own specific and special properties that give it essential functions in devices ranging from smart phones, batteries, wind turbines and solar cells to electric vehicles. Techmetals are thus essential enablers of a future circular, low carbon economy and demand for many is increasing rapidly. E.g., to meet the UK's 2050 ambition for offshore wind turbines will require 10 years' worth of global neodymium production. To replace all UK-based vehicles with electric vehicles would require 200% of cobalt and 75% of lithium currently produced globally each year. The UK is 100% reliant on imports of techmetals including from countries that represent geopolitical risks. Some techmetals are therefore called Critical Raw Materials (high economic importance and high risk of supply disruption). Only four of the 27 raw materials considered critical by the EU have an end-of-life recycling input rate higher than 10%. Our UKRI TechMet CE Centre brings together for the first time world-leading researchers to maximise opportunities around the provision of techmetals from primary and secondary sources, and lead materials stewardship, creating a National Techmetals Circular Economy Roadmap to accelerate us towards a circular economy. This will help the UK meet its Industrial Strategy Clean Growth agenda and its ambitious UK 2050 climate change targets with secure and environmentally-acceptable supplies of techmetals. There are many challenges to a future techmetal circular economy. With growing demand, new mining is needed and we must keep the environmental footprint of this primary production as low as possible. Materials stewardship of techmetals is difficult because their fate is often difficult to track. Most arrive in the UK 'hidden' in complex products from which they are difficult to recover. Collection is inefficient, consumers may not feel incentivised to recycle, and policy and legislative initiatives such as Extended Producer Responsibility focus on large volume metals rather than small quantity techmetals. There is a lack of end-to-end visibility and connection between different parts of techmetal value chains. The TechMet consortium brings together the Universities of Exeter, Birmingham, Leicester, Manchester and the British Geological Survey who are already working on how to improve the raw materials cycle, manufacture goods to be re-used and recycled, recycle complex goods such as batteries and use and re-use equipment for as long as possible before it needs recycling. One of our first tasks is to track the current flows of techmetals through the UK economy, which although fundamental, is poorly known. The Centre will conduct new interdisciplinary research on interventions to improve each stage in the cycle and join up the value chain - raw materials can be newly mined and recycled, and manufacturing technology can be linked directly to re-use and recycling. The environmental footprint of our techmetals will be evaluated. Business, regulatory and social experts will recommend how the UK can best put all these stages together to make a new techmetals circular economy and produce a strategy for its implementation.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S030476/1
    Funder Contribution: 1,538,130 GBP

    The 9th March 2016 was the 50th anniversary of the landmark "Jost Report - Lubrication (Tribology) Education and Research" . The word Tribology was born and the dramatic financial savings that could be gained by optimum practice in this area were formally documented for the first time. 50 years on, the impact of tribology (friction and wear) on the economies of developed nations remains the same; 5-8% of GDP; but tribology as an engineering science has evolved. Tribology challenges in 2016 and beyond are driven by new challenges; the challenges in 1966 were solved and new challenges go with the emergence of new industrial areas. The basic science of tribology remains the same but there is a need to embrace multi-scale thinking, complex materials and interfaces and systems to operate in new and demanding environments. In this proposal Tribology as an enabling technology will be integrated into two industrial areas that are underpinning for the UK and internationally; advanced manufacturing and robotics and autonomous systems. The proposal is transformative as it brings tribology, as a positive and enabling discipline, into two emerging areas of nanomanufacturing and robotics. Tribology is normally associated with the wear and degradation and whilst important to the economy normally has negative connotations. This proposal embraces the positive aspects of triblogical science.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/I016767/1
    Funder Contribution: 51,184 GBP

    Predicting future climate change is intimately linked to understanding what is happening to the climate system in the present, and in the recent past. Studies in the Polar Regions provide vital clues in our understanding of global climate, and early indications of changes arising from the coupling of natural processes, such as variability in the amount of energy from the Sun reaching the Earth, and man-made factors. For example, the polar winter provides the extreme cold, dark conditions in the atmosphere which, combined with chemicals released from man-made chlorofluorocarbon (CFC) gases, has led to destruction of the ozone layer 18-25 km above the ground every spring-time since the 1980's. The Southern hemisphere ozone 'hole' is now linked to observed changes in surface temperature and sea-ice across Antarctica, decreased uptake of carbon dioxide by the Southern Ocean, and perturbations to the atmospheric circulation that can affect weather patterns as far away as the Northern hemisphere. Ozone loss over the Arctic is generally lower and much more variable, but there is increasing evidence that different meteorology in this region can lead to interactions between regions of the atmosphere from the ground to over 100 km up, on the edge of space. Recovery of the ozone layer is expected now that CFC's are banned by international protocols, but this may be delayed by other greenhouse gases we are releasing into the atmosphere and natural processes such as changes in the Sun's output. Although the total amount of energy as sunlight changes by a small amount (~0.1%) over the typical 11-year solar cycle, the energetic particles - electrons and protons - streaming from the Sun changes dramatically on timescales from hours to years. These particles are guided by the Earth's magnetic field and can enter the upper atmosphere, most intensely over the Polar Regions. A visible effect is the aurora, but the particles can significantly modify the chemistry of the atmosphere down to the ozone layer. Powerful solar storms can also damage satellites and disrupt electrical power networks. However the mechanisms by which energetic particles generated by the Sun enter the Earth's atmosphere, and the complex, interacting processes that affect stratospheric ozone are not well understood, which limits our ability to accurately predict future ozone changes and impacts on climate. We propose answering major unresolved questions about energetic particle effects on ozone by making observations of the middle atmosphere from the prestigious ALOMAR facility in northern Norway. This location, close to the Arctic Circle, is directly under the main region where energetic particles enter the atmosphere, making it ideal to observe the resulting effects. We will install a state-of-the-art microwave radiometer there alongside other equipment run by scientists from all round the world. By analysing the microwaves naturally emitted by the atmosphere high above us we can work out how much ozone there is 30-90 km above the ground as well as measuring chemicals produced in the atmosphere by energetic particles. We will make observations throughout a complete Arctic winter (2011/12) and interpret them with the help of data from orbiting spacecraft measuring the energetic particles entering the atmosphere. We will use the Arctic observations and computer-based models to better understand the impact of energetic particles on the atmosphere. The ultimate goal is to further understanding of the processes that lead to climate variability in the Polar Regions and globally - highly relevant for UK environmental science, the BAS programme, and collaborative research at an international level in which BAS plays a key role.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S036237/1
    Funder Contribution: 1,027,940 GBP

    The 20th Century was characterised by a massive global increase in all modes of transport, on land and water and in the air, for moving both passengers and freight. Whilst easy mobility has become a way of life for many, the machines (planes, automobiles, trains, ships) that enable this are both highly resource consuming and environmentally damaging in production, in use and at the end of their working lives (EoL). Over the years, great attention has been paid to increasing their energy efficiencies, but the same effort has not been put into optimising their resource efficiency. Although they may share a common origin in the raw materials used, the supply chains of transport sectors operate in isolation. However, there are numerous potential benefits that could be realised if Circular Economy (CE) principles were applied across these supply chains. These include recovery of energy intensive and/or technology metals, reuse/remanufacture of components, lower carbon materials substitutions, improved energy and material efficiency. While CE can change the transport system, the transport system can also enable or disable CE. By considering different transport systems in a single outward-looking network, it is more likely that a cascading chain of materials supply could be realised- something that is historically very difficult within just a single sector. CENTS will focus on transport platforms where CE principles have not been well embedded in order to identify synergies between different supply chains and to optimise certain practices, such as EoL recovery and recycling rates and energy and material efficiency. It will also be 'forward looking' in terms of developing future designs, business models and manufacturing approaches so that emergent transport systems are inherently circular. More specifically, our Network will carry out Feasiblity and Creativity@Home generated research that will develop the ground work for future funding from elsewhere; provide travel grants to/from the UK for both established and Early Career Researcgers to increase the UK network of expertise and experience in this critical area; hold conferences and workshops where academics and industrialists can learn from each other; build demonstrators of relevant technology so that industry can see what is possible within a Circular Economy approach. These activities will all be supported by a full communication strategy focusing on outreach with school children and policy influence though agencies such as Catapults and WRAP.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.