
Europe’s industry is facing many challenges such as global competition and the big change towards energy and resource efficiency. topAM can contribute to these demands by development and application of novel processing routes for new oxide-dispersoid strengthened (ODS) alloys on FeCrAl, Ni and NiCu basis. Novel ODS materials offer a clear advantage for the process industry by manufacturing e.g. topology-optimized, sensor-integrated high temperature devices (gas burner heads, heat exchangers) that are exposed to aggressive environments. Alloy and process development will be targeted by an advanced integrated computational materials engineering (ICME) approach combining computational thermodynamics, microstructure and process simulation to contribute to save time, raw materials and increase the component’s lifetime. Physical alloy production will be realized by combining nanotechnologies to aggregate ODS composites with laser-powder bed fusion and post-processing. The ICME approach will be complemented by comprehensive materials characterization and intensive testing of components under industrially relevant in-service conditions. This strategy allows to gain a deeper understanding of the process-microstructure-properties relationships and to quantify the improved functionalities, properties and life cycle assessment. This will promote cost reduction, improved energy efficiency and superior properties combined with a significant lifetime increase. The consortium consists of users, materials suppliers and research institutes that are world leading in the fields relevant for this proposal, which guarantees efficient, high-level, application-oriented execution of topAM. The industrial project partners, in particular the SMEs, will achieve higher competitiveness due to their strategic position in the value chain of materials processing, e.g. powder production, to strengthen Europe's leading position in the emerging technology field of AM in a unique combination with ICME.
The aim of E-ECO Downstream is to enable a clean steel production by developing advanced and breakthrough technologies for the steel making downstream processes. This will decisively support the EU in achieving its goal towards climate neutrality by 2050. E-ECO Downstream focuses on the efficient utilization of hydrogen, biogas, and electricity to substitute carbon-based fuels and drastically lower the carbon footprint of the steel production. Energy efficiency is pursued to enable sustainable utilization of volatile green energy. Currently installed burners of reheating furnaces will be enabled to utilize green H2 by integration of newly designed and 3D-printed burner components instead of replacing entire burner systems. To increase fuel flexibility hybrid heating concepts (H2 and electricity) will be investigated in a pilot walking beam furnace. Since the mentioned solutions will change the waste heat streams and their heat recovery in future downstream processes must be reevaluated. This will be done by analysing the partners processes and plants, development and testing of waste heat recovery concepts and recuperators regarding their suitability to new fuels and their off gases, while considering their impact on materials/product. Energy efficiency potentials of downstream processes will be evaluated by case studies for the application of hot charge from casting to hot rolling by covering of the slabs with passive and active panels. The elaborated solutions will be assessed by techno-eco-environmental analysis to evaluate their applicability and to increase their acceptance in the steel community. The E-ECO Downstream consortium has a deep and shared knowledge of iron and steel making, downstream processes and heating technology, materials engineering, numerical simulation, experimental investigations, economy, and life cycle analysis.
HELIOTROPE is a groundbreaking research and development endeavor dedicated to advancing Concentrated Solar Power (CSP) technology to unprecedented heights. This project focuses on developing state-of-the-art molten salts and materials technologies for thermal energy storage systems, pushing the boundaries of operational temperatures beyond the current industry standard of 600ºC. A holistic approach is at the heart of HELIOTROPE's mission. Sustainable novel molten salts as thermal energy storage mediums and the remarkable ability to withstand absorber surface temperatures of up to 850ºC are introduced, promising to enhance CSP plant efficiency and dispatchability. This technological advancement aims to redefine the capabilities of CSP plants. Furthermore, HELIOTROPE aligns closely with key European energy policies and initiatives, contributing significantly to energy security, reducing reliance on fossil fuels, and lowering greenhouse gas emissions. The project supports the vision outlined in the European Green Deal, Clean Energy for All Europeans, and the Fit for 55 legislations, fostering sustainability and competitiveness in the energy sector. HELIOTROPE aspires to reshape the CSP plant landscape, making them not only more efficient but also inherently environmentally friendly. The project represents a significant stride towards a sustainable energy future, where CSP technology leads the way in innovation and progress, redefining the boundaries of what is possible in the pursuit of a cleaner, more sustainable energy world.