Powered by OpenAIRE graph
Found an issue? Give us feedback

ESTEP

ESTEP PLATEFORME TECHNOLOGIQUE EUROPEENNE DE L'ACIER
Country: Belgium
11 Projects, page 1 of 3
  • Funder: European Commission Project Code: 101091456
    Overall Budget: 24,007,400 EURFunder Contribution: 17,707,700 EUR

    The main objective of HyInHeat is the integration of hydrogen as fuel for high temperature heating processes in the energy intensive industries. While some of the equipment is already presented as hydrogen-ready, the integration of hydrogen combustion in heating processes still needs adoption and redesign of infrastructure, equipment and the process itself. HyInHeat realizes the implementation of efficient hydrogen combustion systems to decarbonize heating and melting processes of the aluminium and steel sectors, covering almost their complete process chains. To reach this overarching objective within the project, furnace and equipment like burners or measurement and control technology but also infrastructure is redesigned, modified and implemented in eight demonstrators at technical centres and industrial plants. Besides hydrogen-air heating, oxygen-enriched combustion and hydrogen-oxyfuel heating is implemented to boost energy efficiency and to decrease the future hydrogen fuel demand of the processes. This might result in a total redesign of the heating process itself which will be supported by simulation methods enhancing digitalisation along the value chain. Since critical production processes are converted, it is a fundamental requirement to maintain product quality and yield. Priority is also given to the refractory lining to prove sustainability. From an environmental perspective, new concepts for NOx emission measurement in hydrogen combustion off-gas are developed. Material flow analysis and life cycle analysis methods will support the comprehensive cross-sectorial evaluation, which allows the determination of the potential for the implementation of hydrogen heating processes in energy intensive industry. With these activities, HyInHeat contributes to the objectives of decreasing CO2 emission of the processes while increasing energy efficiency in a cost competitive way keeping NOx emission levels and resource efficiency at least at the same level.

    more_vert
  • Funder: European Commission Project Code: 101138228
    Overall Budget: 6,374,940 EURFunder Contribution: 5,997,960 EUR

    The main objective of H2PlasmaRed is to develop hydrogen plasma smelting reduction (HPSR) technology for the reduction of iron ores and steelmaking sidestreams to meet the targets of the European Green Deal for reducing CO2 emissions and supporting the circular economy in the steel industry across Europe. Our ambition is to introduce a near CO2-free reduction process to support the goal of the Paris Agreement - a 90% reduction in the carbon intensity of steel production by 2050. To achieve this, H2PlasmaRed will develop HPSR from TRL5 to TRL7 by demonstrating the HPSR in a pilot-HPSR reactor (hundred-kilogram-scale) that is an integrated part of a steel plant, and in a pilot-scale DC electric arc furnace (5-ton scale) by retrofitting the existing furnace. The project's end goal is to establish a way to upscale the process from pilot-scale into industrial practice. To support this goal, the novel sensors and models developed and implemented in the project are used for HPSR process optimization from a reduction, resource, and energy efficiency standpoint.

    more_vert
  • Funder: European Commission Project Code: 101058362
    Overall Budget: 6,762,120 EURFunder Contribution: 4,645,640 EUR

    Each year the EU steel sector generates several million tons of metal and mineral containing residues that are currently largely under-exploited and are often sent to landfills with an enormous waste of resources that could replace virgin materials. ReMFra main objective is the development and validation of highly efficient pyrometallurgic melting and reduction demonstration plant at relevant industrial scale for recovering metals and minerals contained in a wide range of steelmaking residues. The ReMFra process will allow to valorise steelmaking residues, such as filter dust, scale, sludge and slags, to obtain pig iron, iron rich oxides, a highly concentrated zinc oxide and an inert slag. ReMFra comprises two main parts to be developed, improved and tested at industrial scale: Plasma Reactor and RecoDust. The first will be dedicated to recover the coarse residues (scale, sludge, slag), while the second will focus on fine-grained dusts. The project will allow the improvement of iron yield using recovered pig iron instead of new pig iron and replacing the iron ore with the iron rich oxide. The recovery of concentrated ZnO and inert slag as by-products will provide a significant source of income and will contribute to the overall carbon neutrality. To reach the full circularity, the process foresees the use, as reducing agent, of secondary carbon sources (i.e. waste plastics). Energy recovery solutions will also be integrated in the metal recovery process starting from enabling the use of molten pig iron. ReMFra consortium comprises: 5 steelmaking companies, 4 RTOs as technology providers with large experience in steel sector, 1 university and the European Steel Technology Platform. To conclude, ReMFra is expected not only to enable technological advances in the demonstrators involved but will also contribute to the development of new standards, training programmes, adaptation and certification of industrial processes thus facilitating the replication of the project.

    more_vert
  • Funder: European Commission Project Code: 101092328
    Overall Budget: 4,099,690 EURFunder Contribution: 3,564,250 EUR

    EAF steelmaking is the key technology for decarbonised steelmaking, either in scrap-based plant by modification of existing processes for further decarbonisation, or as new EAF installations in decarbonised integrated steel works to (partly) replace the classical BF-BOF production. At same time the EAF is the most important example for modular and hybrid heating, already now combining electric arc heating with burner technologies. Consequently, it was selected as main focus of GreenHeatEAF for the Call „Modular and hybrid heating technologies in steel production“. GreenHeatEAF develops and demonstrates the most important decarbonisation approaches at EAFs including the use of hydrogen to replace natural gas combustion in existing or re-vamped burners or innovative technologies like CoJet. Furthermore, decarbonisation of EAF steelmaking by solid materials like DRI/HBI and renewable carbon sources like biochar is tackled. Technologies to re-optimise the heating management with maximum heat recovery of off-gas and slag employing new sensor and soft-sensor concepts as well as extended digital twins are developed: as result the extended CFD and flowsheeting models, and monitoring and control tools will prognose the influences of the different decarbonisation measures on EAF and process chain to support upcoming decarbonisation investments and to enable the control of decarbonised hybrid heating with maximum energy efficiency. GreenHeatEAF combines trials in demonstration scale, e.g. in combustion- and EAF-demo plants, with validations in industrial scale and digital optimisations with high synergy. Thus, it completely follows the Horizon Twin Transition and Clean Steel Partnership objectives and the target to progress decarbonisation technologies from TRL 5 to 7. This synergic concept of GreenHeatEAF supports implementation and digitisation to speed up the transition of the European steel industry to highly competitive energy-efficient decarbonised steel productio

    more_vert
  • Funder: European Commission Project Code: 101091960
    Overall Budget: 6,055,720 EURFunder Contribution: 4,985,620 EUR

    Growing demand for high quality iron ores and scrap as well as abandonment of carbon intensive sintering in the future require novel technological approaches for upgrading of low-grade iron ores and recycling of mill scale. TransZeroWaste will apply hydrometallurgy for mill scale de-oiling and use this iron-rich scrap equivalent to upgrade low-grade iron ores. For that, TransZeroWaste will develop low carbon technologies such as cold pelletising and briquetting, hot microwave pelletising, and magnet-supported hydrometallurgy from TRL 6 to TRL 8. The developed technologies will be transferable to further material flows such as dusts and sludges. On European level, the expected impact will be the potential upgrade of over 18 million t/a low-grade iron ore, up to 6 million t/a mill scale and 3 million t/a pellet sieving residue. Total impact of TransZeroWaste will include upgrading of 27 million t/a materials with low carbon technologies and avoiding of corresponding sinter plant carbon footprint of 4,3 – 9,9 MtCO2/a. Technological competences and know-how are owned by the participating partners from the applied research. They will be developed and transferred to the two industrial partners with 9 production sites. Thoroughly planned dissemination and exploitation activities will ensure effective implementation of technologies after project end. Life cycle assessment and economic evaluation will be performed; sustainable business models will be developed. Furthermore, a decision support platform for industrial users will be installed. In combination with workshops and trainings it will help to find and implement the best upgrading technology for various low-grade materials considering environmental and economic aspects. TransZeroWaste will serve as a vehicle for the transition of the European steel industry to the carbon free zero waste future.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.