Powered by OpenAIRE graph
Found an issue? Give us feedback

AECOM

44 Projects, page 1 of 9
  • Funder: UK Research and Innovation Project Code: EP/S021671/1
    Funder Contribution: 6,019,790 GBP

    The UK is on the brink of a new, third age of energy efficiency. UK greenhouse gas emissions must fall a further 65% by 2050, but the energy system will decarbonise even faster. Large wind, marine and solar generators, supported by energy storage, will dominate the central supply system and intelligent, community and building-integrated systems will be embedded in our towns and cities. This interaction of people, buildings and energy systems will transform the relationship between supply and demand. Our domestic and non-domestic buildings can no longer be passive consumers of heat and power, instead, our homes and businesses must participate actively in a flexible, integrated, low-carbon supply and demand system, buying, selling and storing heat and power to achieve 'Energy resilience through security, integration, demand management and decarbonisation'. This must be achieved whilst simultaneously meeting our human need for high quality spaces in which to live and work, thereby increasing the productivity of the UK economy, reducing fuel poverty, improving health and wellbeing, and supporting an ageing population. The new EPSRC CDT in Energy Resilience and the Built Environment (ERBE) will train at least 50 PhD graduates to understand the systemic, radical, multi and interdisciplinary challenges we face, and have the leadership credentials to effect change. Students will be immersed in world-leading research environments at UCL, Loughborough University collaborating with the Centre for Marine and Renewable Energy in Ireland. ERBE students will attain a depth of understanding only possible as cohorts work and learn together. An integrated, 4-year programme will be co-created with our stakeholder partners and students. It will provide the knowledge, research and transferable skills to enable outstanding graduates from physics to social sciences to pursue research in one of three themes: * Flexibility and resilience: the interaction between buildings and the whole supply system, through new generation and storage technology, enabled by smart control systems and new business models. * Technology and system performance: demand reduction and decarbonisation of the built environment through design, construction methods, technological innovation, monitoring and regulation. * Comfort, health and well-being: buildings and energy systems that create productive work environments and affordable, clean, safe homes. The Centre will be led by Directors who have worked together for over 30 years, supported by deputies, academic managers, administrators and a course development team who have successfully delivered the CDT in Energy Demand. Over 50 world-leading academics are available as student supervisors. The core team will be guided by an Advisory Board representing the UK government, energy suppliers, research organisations, consultancies, construction companies and charities; more than 30 prominent individuals have expressed an interest in joining the board. Board members and stakeholders will provide secondments, business skills training and careers advice. The Centre will provide training and research benefits to the wider energy and buildings community. A new online Buildings, Energy, Resilience and Demand Hub will be created to share training materials, videos, seminars and to promote collaboration, a residential, weeklong programme, Energy Resilience and the Built Environment, will be open to PhD students from across the world as will an annual, student-led conference. An annual Anglo-Irish summer school and a colloquium will showcase the Centre's work and bring students face-to-face with potential future employers. By providing training in a rigorous, world-leading, stakeholder-shaped, outward-facing and multi-centred research environment, the new ERBE CDT will help the UK achieve the goals in the government's Industrial Strategy and Clean Growth Strategy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V011820/1
    Funder Contribution: 4,430,350 GBP

    177 million tonnes of virgin aggregates, 15 million tonnes of cement and 2 billion bricks were used to build houses, civic and commercial buildings, roads and railways, etc, in the UK in 2016. Meanwhile, 64 million tonnes of waste arose from construction and demolition. Materials from construction and demolition are mainly managed by down-cycling with loss of the value imparted to them by energy-intensive and polluting manufacturing processes; for example, high value concrete is broken down into low value aggregate. Environmental damage is associated with the whole linear life cycles of mineral-based construction materials, and includes scarring of the landscape and habitat destruction when minerals are extracted from the earth; depletion of mineral and energy resources; and water use and emission of greenhouse gases and other pollutants to air, land and water, during extraction, processing, use and demolition. It is important to take action now, to return materials to the resource loop in a Circular Economy, and reduce the amount of extraction from the earth, as the amount we build increases each year. For example, the UK plans spend £600 billion to build infrastructure in the next decade. The UKRI National Interdisciplinary Circular Economy Research Centre for Mineral-based Construction Materials therefore aims to do more with less mineral-based construction materials, to reduce costs to industry, reduce waste and pollution, and benefit the natural environment that we depend on. There is potential for mineral-based construction materials to be reused and recycled at higher value, for example, by refurbishing rather than demolishing, or by building using reusable modules that can be taken apart rather than demolished, so all the energy that went into making them isn't wasted. It may also be possible to substitute minerals from natural sources by other types of mineral wastes, such as the 76 million tonnes of waste arising from excavation and quarrying, 14 million tonnes of mineral wastes that come from other industries, or 4 billion tonnes of historical mining wastes. We can also be more frugal in our use of mineral-based construction materials, by designing materials, products and structures to use less primary raw materials, last longer, and be suitable for repurposing rather than demolition, and using new manufacturing techniques. First, our research will try to better understand how mineral-based construction materials flow through the economy, over all the stages of their life cycle, including extraction, processing, manufacture, and end-of-life. The Centre will work to support the National Materials Database planned by the Office of National Statistics, which will capture how, where and when materials are used and waste arises, so that we have the information to improve this system. We will also study how any changes we might make to practices around minerals use would affect the environment and the economy, such as greenhouse gas emissions, costs to businesses, or jobs. Second, we will work on technical improvements that we can make in design of mineral-based products and structures, and in all the life-cycle stages of mineral-based construction materials. Third, we will look at how changes in current business models and practices could support use of less mineral-based construction materials, such as how they might be able to move more quickly to new technologies, or how they might use digital technologies to keep track of materials. We will explore how the government can support these changes, and how we can provide education so that everyone working in this system understands what they need to do. In the first 4 years of our Centre, 15 postdoctoral researchers will gain research experience working in the universities for 2y and will then work with an industrial collaborator for a year, to implement the results of their research. More than 20 PhD and 30 MSc students will also be trained in the Centre.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H009612/1
    Funder Contribution: 5,814,410 GBP

    Reducing carbon emissions and securing energy supplies are crucial international goals to which energy demand reduction must make a major contribution. On a national level, demand reduction, deployment of new and renewable energy technologies, and decarbonisation of the energy supply are essential if the UK is to meet its legally binding carbon reduction targets. As a result, this area is an important theme within the EPSRC's strategic plan, but one that suffers from historical underinvestment and a serious shortage of appropriately skilled researchers. Major energy demand reductions are required within the working lifetime of Doctoral Training Centre (DTC) graduates, i.e. by 2050. Students will thus have to be capable of identifying and undertaking research that will have an impact within their 35 year post-doctoral career. The challenges will be exacerbated as our population ages, as climate change advances and as fuel prices rise: successful demand reduction requires both detailed technical knowledge and multi-disciplinary skills. The DTC will therefore span the interfaces between traditional disciplines to develop a training programme that teaches the context and process-bound problems of technology deployment, along with the communication and leadership skills needed to initiate real change within the tight time scale required. It will be jointly operated by University College London (UCL) and Loughborough University (LU); two world-class centres of energy research. Through the cross-faculty Energy Institute at UCL and Sustainability Research School at LU, over 80 academics have been identified who are able and willing to supervise DTC students. These experts span the full range of necessary disciplines from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. The reputation of the universities will enable them to attract the very best students to this research area.The DTC will begin with a 1 year joint MRes programme followed by a 3 year PhD programme including a placement abroad and the opportunity for each DTC student to employ an undergraduate intern to assist them. Students will be trained in communication methods and alternative forms of public engagement. They will thus understand the energy challenges faced by the UK, appreciate the international energy landscape, develop people-management and communication skills, and so acquire the competence to make a tangible impact. An annual colloquium will be the focal point of the DTC year acting as a show-case and major mechanism for connection to the wider stakeholder community.The DTC will be led by internationally eminent academics (Prof Robert Lowe, Director, and Prof Kevin J Lomas, Deputy Director), together they have over 50 years of experience in this sector. They will be supported by a management structure headed by an Advisory Board chaired by Pascal Terrien, Director of the European Centre and Laboratories for Energy Efficiency Research and responsible for the Demand Reduction programme of the UK Energy Technology Institute. This will help secure the international, industrial and UK research linkages of the DTC.Students will receive a stipend that is competitive with other DTCs in the energy arena and, for work in certain areas, further enhancement from industrial sponsors. They will have a personal annual research allowance, an excellent research environment and access to resources. Both Universities are committed to energy research at the highest level, and each has invested over 3.2M in academic appointments, infrastructure development and other support, specifically to the energy demand reduction area. Each university will match the EPSRC funded studentships one-for-one, with funding from other sources. This DTC will therefore train at least 100 students over its 8 year life.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/S005951/1
    Funder Contribution: 252,871 GBP

    Landslides and floods are globally occurring natural hazards that pose a significant threat to human life and sustainable development. The most severe losses due to landslides occur in the less economically developed countries of Asia and South America, particularly in those with mountainous topography, earthquakes and monsoonal climates. Landslides and rockfalls in these regions often detach fractured bedrock and deliver large boulders downslope that block roads, destroy buildings and kill people. On entering the river channel network, boulders may be bulldozed by large floods and block hydropower infrastructure, jeopardizing electricity supply and the economy. Thus, boulders may cause a cascade of hazards. This project addresses specific landslide and flood risk management problems brought to our attention by stakeholders impacted by boulders in the Upper Bhote Koshi catchment in Nepal, one of the most landslide and flood-prone countries in the world. This project also addresses a lack of data and scientific understanding of (i) boulder production on hillslopes (e.g. by landslides), (ii) boulder transport in floods. In this two year project, an inter-disciplinary team of researchers will work closely with project partners to (1) map boulders and investigate the controls on boulder production on hillslopes by landslides and rockfalls, (2) develop a new real-time GPS boulder tracking system with which to improve understanding of boulder movement in floods and monitor hazardous boulders (3) engage with stakeholders to incorporate findings into disaster management plans and ultimately to increase resilience to landslide and flood hazards. The project will focus on the Upper Bhote Koshi (UBK) catchment to the north east of Kathmandu, Nepal, and has been designed with specific end users in mind in the UBK that are dealing with boulder hazards related to landslide and floods. This area is particularly vulnerable to boulder hazards as it is the main road link between Nepal and China and contains several major hydroelectric power plants including the Upper Bhote Koshi Hydroelectric Power plant (UBKHEP). The catchment encapsulates the multitude of natural hazards faced by Nepal. In 2015 the catchment was shaken by the Gorkha earthquake generating some of the highest densities of landsliding anywhere in Nepal. In July 2016, a complex monsoon flash flood entrained extremely large boulders (>8 m) some of which became jammed in the sluice gates of the UBKHEP culminating in more than $110 m damage to the power station. The power station remains closed resulting in lost revenue and compromising Nepal's energy supply. As the power company rebuilds and a further hydroelectric power station is built just downstream, it will be vital to properly account for future boulder hazards in landslide and floods. The project brings together an interdisciplinary team of researchers based in the UK, Germany and Nepal with several project partners that have helped to define the problems that this project will address. The boulder hazard map and boulder tracking system developed in this research will help make the Bhote Koshi Power Company and wider hydropower industry more resilient to landslide and flood hazards. The research will also benefit organizations managing transport infrastructure and communities living on steep, landslide prone hillslopes in the Bhote Koshi. We will hold two project workshops bringing together project partners and relevant stakeholders from industry, local communities and government institutions with the help of Practical Action Consulting Nepal, to research boulder hazard perception and enhance uptake of this research into risk management practice at local and national governance level and ultimately to aid development in Nepal and South Asia.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/M008169/1
    Funder Contribution: 49,669 GBP

    The increased frequency of extreme weather events associated with climate change results in the increased risk of surface water (pluvial) flooding, posing a great threat to the integrity and function of critical urban infrastructure. During the winter of 2013/14 twelve major winter storms occurred resulting in more than 5,000 homes, businesses and infrastructure being flooded in southern England. Green infrastructure, in the form of Sustainable Urban Drainage Systems (SUDS), has been proposed as a potential measure that is likely to have a significant effect on flood risk in urban environments. However, despite their multifunctional benefits, SUDS often fail the feasibility criteria of Flood Risk Management (FRM) cost-benefit assessment. The Environment Agency (EA) highlighted a number of knowledge gaps concerning the cost and benefits of large-scale SUDS retrofitting schemes, in particular the data to remove uncertainties concerning the economic appraisal of innovative solutions. The scientific community and engineering consultants have also recognised the importance of utilising vegetation to enhance urban water management by delivering a range of essential services to towns and cities and supporting urban adaptation to climate change. The Climate-KIC funded Blue Green Dream (BGD) project gathered eminent partners to develop tools for assessing the interactions between urban water (blue) systems and vegetated (green) areas and hence maximise the multifunctional benefits of so-called Blue Green Solutions (including SUDS). Building on that research, this project will assign green infrastructure interventions as assets by progressing knowledge and understanding of the ability of Blue Green Solutions to provide cost-beneficial Flood Risk Management services. This will be achieved by brining together the expertise from three BGD project partners - Imperial College London, Deltares and AECOM, supported by the EA Water London Team. The Decoy Brook sub-catchment in London Borough of Barnet will be used as a case study for: a) mapping of Blue Green Solutions for infrastructure protection using the Adaptation Support Tool; b) improving the cost-benefit assessment of SUDS by quantifying multifunctional benefits of innovative Blue Green Solutions; and c) producing an advanced tool for full cost-benefit analysis of the proposed SUDS retrofitting scheme in compliance with the Flood Risk Management assessment. This will enable the EA to transparently and objectively assess Blue Green Solutions against the broad range of benefits. In addition, it will provide AECOM an example of a robust business case for utilising SUDS/Blue Green Solutions to protect infrastructure that addresses the reduction in the levels of uncertainty associated with the results from such analyses. Outputs from this project will be used to provide evidence to the Greater London Authority on the development of a pan London approach to delivering sustainable drainage systems. In addition, more accurate and robust valuing of SUDS and demonstrating the full return on each pound invested will enable EA's SUDS retrofit projects to compete on an equal footing for Flood and Coastal Erosion Risk Management Grant in Aid funding.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.