Powered by OpenAIRE graph
Found an issue? Give us feedback

Cornell University

Cornell University

45 Projects, page 1 of 9
  • Funder: UK Research and Innovation Project Code: BB/H002499/1
    Funder Contribution: 365,220 GBP

    Males of many different mammal, bird and invertebrate species respond to their social and sexual environment. These responses have profound effects on their reproductive success. For example, males of many species that perceive rivals transfer more sperm to females during mating, to increase their share of paternity. However, the complete pathway from the detection of cues from rival males, to effects on the composition of the male ejaculate through to ultimate reproductive success is not known. Nor do we know the effects on ageing for males of responding to rivals. The discovery of the pathway between rival detection and paternity represents the next key stage in understanding the evolution of male mating success. In this proposal we aim to provide the first case study, using the fruitfly. The fruitfly offers a unique opportunity, its genome has been sequenced and there are many different genetic reagents available with which to manipulate a male's perception of the number of rivals present. We have also generated a substantial amount of relevant and novel background data. For example, males respond to the presence of rivals before mating, and subsequently mate for longer when they do meet a female. More importantly, during those longer matings they transfer more of key ejaculate components, which increase the overall number of offspring fathered. Males appear to detect rivals by smelling a particular male pheromone. Importance for pure research: The work tackles questions of fundamental importance: how do males respond to rivals and what are the fitness consequences of doing so. When ejaculates are limiting (e.g. when males that mate just a few times become exhausted), males partition their ejaculates among different matings and different females, according to how many rival males are present. However, despite the wealth of studies showing that males do this, key questions remain: (i) what are molecular mechanisms by which males signal and perceive rivals? and (ii) what are the overall consequences, particularly the impact on ageing, for males that respond to the presence of rivals. These are the questions we will answer. Importance for applied research: Of equal importance, our work will provide techniques to improve insect pest control. Insect pests are the source of the world's most serious agricultural (and health) problems. Research is focusing on methods whose basic principles lie in biological control. However, males produced for control often have poor mating success. We aim to provide methods to improve this (e.g. simple husbandry rules to increase exposure to rivals or pheromones) using the fruitfly, which is the only species in which the relevant background data and genetic reagents are available. We plan to apply our findings to pests in the future. Methodology: We will manipulate male numbers and length of exposure to rivals, and the smell pathways that our work has highlighted as important. We can test the amount of ejaculate proteins transferred to females during mating using a method developed by our project partner, Mariana Wolfner from Cornell University. We can test for sperm transfer by staining and counting the sperm transferred. To test for the effects of responding to rivals on male ageing, we will compare the lifespan and reproductive success of males that mate following exposure, or not, to rivals. Timeliness and originality: Our proposal will provide the first investigation of the complete pathway by which males respond to rivals. The work is timely given the recent elucidation of smell receptors, our recent discoveries of changes to ejaculate composition in the presence of rivals and the recent surge of developments in genetic insect pest control.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H046887/1
    Funder Contribution: 530,211 GBP

    Here we propose to investigate the synthesis and characterization of novel classes of metal-based nano-structuredparticles and composites with well-defined geometry and connectivity. The materials are obtained by a modular bottom-upapproach of metal-containing nanoparticles (NPs) with core-shell architecture as well as nanocomposites from metal NPsand block copolymers (BCs) as structure-directed agents. The aim of the proposed program is to understand theunderlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relativelyinexpensive wet-chemistry methodologies for the efficient creation of multiscale functional metal materials with noveloptical property profiles that may revolutionize the field of nanophotonics/plasmonics/ metamaterials, enabled by nmscalecontrol over the underlying structure over large dimensions. The proposed research includes synthesis of allnecessary organic/polymer and inorganic components, characterization of assembly structures using various scattering,optical and electron microscopy techniques, as well as thorough investigations of their optical properties includingsimulation and modeling efforts, and work towards major novel optics in the form of sub-wavelength imaging, highlysensitive hot-spot arrays over macroscopic dimensions for sensing, and sub-wavelength waveguiding. While the mainfocus of our proposed work lies on non-magnetic materials and the assessment of linear optical properties of thefabricated compounds, a crucial point is that we are aiming at synthesis approaches that can be generalized over a widerclass of materials systems. A final thrust of the program addresses a particularly topical exploitation area, where we willintegrate specific plasmonic structures into hybrid solar cells and characterize and optimize plasmon enhancedphotogeneration of charges and subsequent solar cell efficiency. If successful this will lead to a new generation, or classof photovolatics, namely plasmonic solar cells.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V03474X/1
    Funder Contribution: 420,597 GBP

    Network science is a powerful framework for modelling interacting systems and connected data. The strength of network science comes from its generality in distilling connectivity into core elements --- nodes and edges --- that can combine to form indirect connections. Many social, natural and engineered systems can be represented as networks, such as international relationships, gene regulation, airport networks and the Internet. Modelling dynamical systems such as information or virus spreading on networks reveals the interplay between structure and dynamics. Despite much success, the node-and-edge paradigm of network science has fundamental modelling limitations. These limitations, combined with the availability of detailed network data, have led to the early development of several higher-order network models of richer interactions. This proposal centres on the mathematical development of multiway networks, which model interactions that cannot be decomposed into pairwise edges simply because the atomic interactions involve more than two nodes. For example, chemical reaction networks model interactions between several compounds, small teams of people work together on projects in schools and businesses, and brain activity is mediated by groups of neurones. The joint coordination of multiple entities is not captured by combining pairwise interactions, but can be analyzed with models for multiway networks, such as hypergraphs and simplicial complexes. As a starting point, we will consider the problem of defining dynamical processes on multiway networks. We will consider a variety of approaches, starting with simple, linear Markov random walks, and their dual consensus model, aiming to understand how certain hypergraph structures translate into spectral properties of associated operators. As a next step, we will consider non-linear and non-Markovian processes that cannot be encoded in a standard graph, in order to reveal in full the importance of non-binary interactions between the nodes. A similar exploration will be conducted for random walk dynamics on simplicial complexes, building on the diffusion based on Hodge Laplacian. The flows of probability generated by these dynamical models will then be used to construct efficient ranking and clustering algorithms that take advantage of the rich multiway network structure.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/L003139/1
    Funder Contribution: 501,187 GBP

    Even very simple creatures need to co-ordinate their activities. For example, the sea anemone has a simple net of connected neurons with which it can control the movements within its body wall. As organisms increase in complexity, there are ever more examples where coordinated control of bodily processes is required. We often know a lot about how individual components in these systems might function. However, we have a serious lack of knowledge about how groups of gene products are controlled in the highly precise and flexible way they often are. This is systems biology and is recognized as an increasingly important way in which to understand the complex world around us. Our focus is on a group of vitally important semen proteins transferred along with sperm - the 'transferome'. It has been realized for many decades seminal fluid proteins are far more than a simple sperm buffer. In fact they can cause profoundly important effects on female behaviour and physiology. These effects have been best studied in the fruitfly, which we use as the model system here. However, similar effects are also seen across a huge variety of animal taxa. It has been reported recently that the transfer of seminal fluid proteins by human males causes changes in the expression of immune genes in the female cervix. This is thought to prepare the womb for implantation as well as protecting against sexually transmitted infections. In the fruitfly there are about 130 semen proteins making up the transferome. They are made mostly in the male accessory glands (the fly equivalent of the human male prostate) the ejaculatory ducts and a few in the testes. They result in a huge variety of vitally important effects: they cause females to lay more eggs, to eat more (and of different types of foods), to be less sexually receptive to males, to switch on immune genes, to retain more sperm in storage, to show altered patterns of water balance and to sleep less! We also know from our own work that males can respond in a highly sophisticated and individually flexible manner to their social and sexual environment. When males are exposed to rivals they mate for longer when they meet a female and transfer more transferome components during those longer matings. This results in a higher number of offspring. Furthermore, there is recent evidence to show that the composition of the transferome can change in response to social context. Despite the importance of the transferome to both males and females and its high degree of flexibility, we know next to nothing about how it is controlled. However, we have gathered strong background data and have excellent experimental tools in the fruitfly to tackle this omission, giving us a unique and unparalleled opportunity to investigate for the first time the control of this complex and important system. We hypothesise that an effective way to regulate 130 individual components of the transferome is to manage them in 'sets' controlled by the same activator / inactivator. This facilitates the quick and co-ordinated release of groups of substances as soon as they are required, rather than trying to make them all individually from scratch. We predict that this level of control is achieved in practice by transcription factors that turn on the expression of genes and by different types of small RNAs that then bind to, repress and 'manage' gene sets. Our investigations provide strong evidence that is consistent with these predictions. What we propose here are important tests of these ideas by experimentally altering directly these different types of gene regulation and testing the effects on the control and function of the transferome. This will elucidate how it is that the transferome can be regulated with robustness, precision and flexibility.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/G01843X/1
    Funder Contribution: 623,895 GBP

    How magma is emplaced and interacts with its surrounding rock is of central interest in the Earth Sciences. The intrusion of magma into the Earth's crust plays a major role in the dynamics and the evolution of continental crust. In many cases magmas are funnelled upwards and erupt at volcanoes that dot the Earth's surface, particularly in areas where tectonic plates collide. The Andes are part of such a collision zone where large magma bodies (batholiths) form, due to chemical evolution of intruding deeper magma as well as partial melting of surrounding rocks. A common style of volcanic activity in the Andes is the catastrophic eruption of many hundreds to thousands of cubic kilometres of magma in the form of ignimbrites (volcanic rock containing ash and pumice) which often results in the collapse of the magma chamber roof upon eruption, leaving behind more or less ring-shaped surface depressions with diameters of many kilometres. The project is motivated by results obtained from space-borne satellites indicating ground deformation and significant uplift at in the central Andes at Uturuncu volcano, Bolivia, where magma may be accumulating for 270 thousand years. It is suspected that this inflation is caused by the growth of a large magma body at depth. If this interpretation is correct then these anomalies provide an outstanding opportunity to answer questions such as how large magma bodies are assembled in the crust to form plutons, how they evolve, how they relate to volcanism in general and how they manifest at the Earth's surface, potentially before eruption. We aim to find answers to these questions via a coordinated, integrated approach across various disciplines of the Earth Sciences. Central to this ambitious project lies the amalgamation of geodesy, geophysics, geology, petrology and mathematical modelling to document pluton growth in real time. The implications of the proposed work include assessing the role of plutons in continental dynamics and the potential for large volcanic eruptions. We requests funds for the UK component of a collaborative UK-US project, which also involves partners from Spain, Chile and Bolivia. We propose an integrated investigation of the Uturuncu uplift to test the hypothesis that pluton growth is occurring, to document the dynamics of growth, and to explore the links between plutonism, volcanism and tectonics. The core of the study will be a geophysical experiment over a 4-year period to study the ground deformation, mass changes and seismicity, and to image the sub-surface structure beneath the volcano. The geophysical experiment will be complemented by geological and petrological investigations as well as mathematical modelling to set the geophysical experiment in the context with igneous processes and the long-term magmatic evolution. A key outcome of the research will be a new generation of mathematical models to inform on how large magma chambers grow and which geodetic or geophysical signals we might expect to record at the Earth's surface. We will quantify the nature of the sources responsible for ground inflation by separating the contributions of shallow migration of (hot) water and gases, and deep magma replenishment and ponding, to geophysical signals. We are also interested to find out where these reservoirs are located, how many there are and how they relate to the depth of magma chambers that have led to eruptions in the volcano's past. For the latter, lava morphology studies and petrology will give insights onto the conditions in these magma chambers. We aim at developing advanced models of magma systems embedded in continental crust incorporating complexities such as variable mechanical properties of the crust, plastic deformation of deeper crust as well as the influence of crystallization of gas-saturated magma and shallow hydrothermal systems on ground deformation.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.