Powered by OpenAIRE graph
Found an issue? Give us feedback

e2v technologies plc

Country: United Kingdom

e2v technologies plc

47 Projects, page 1 of 10
  • Funder: UK Research and Innovation Project Code: EP/T001046/1
    Funder Contribution: 28,537,600 GBP

    The Quantum Technology Hub in Sensors and Timing, a collaboration between 7 universities, NPL, BGS and industry, will bring disruptive new capability to real world applications with high economic and societal impact to the UK. The unique properties of QT sensors will enable radical innovations in Geophysics, Health Care, Timing Applications and Navigation. Our established industry partnerships bring a focus to our research work that enable sensors to be customised to the needs of each application. The total long term economic impact could amount to ~10% of GDP. Gravity sensors can see beneath the surface of the ground to identify buried structures that result in enormous cost to construction projects ranging from rail infrastructure, or sink holes, to brownfield site developments. Similarly they can identify oil resources and magma flows. To be of practical value, gravity sensors must be able to make rapid measurements in challenging environments. Operation from airborne platforms, such as drones, will greatly reduce the cost of deployment and bring inaccessible locations within reach. Mapping brain activity in patients with dementia or schizophrenia, particularly when they are able to move around and perform tasks which stimulate brain function, will help early diagnosis and speed the development of new treatments. Existing brain imaging systems are large and unwieldy; it is particularly difficult to use them with children where a better understanding of epilepsy or brain injury would be of enormous benefit. The systems we will develop will be used initially for patients moving freely in shielded rooms but will eventually be capable of operation in less specialised environments. A new generation of QT based magnetometers, manufactured in the UK, will enable these advances. Precision timing is essential to many systems that we take for granted, including communications and radar. Ultra-precise oscillators, in a field deployable package, will enable radar systems to identify small slow-moving targets such as drones which are currently difficult to detect, bringing greater safety to airports and other sensitive locations. Our world is highly dependent on precise navigation. Although originally developed for defence, our civil infrastructure is critically reliant on GNSS. The ability to fix one's location underground, underwater, inside buildings or when satellite signals are deliberately disrupted can be greatly enhanced using QT sensing. Making Inertial Navigation Systems more robust and using novel techniques such as gravity map matching will alleviate many of these problems. In order to achieve all this, we will drive advanced physics research aimed at small, low power operation and translate it into engineered packages to bring systems of unparalleled capability within the reach of practical applications. Applied research will bring out their ability to deliver huge societal and economic benefit. By continuing to work with a cohort of industry partners, we will help establish a complete ecosystem for QT exploitation, with global reach but firmly rooted in the UK. These goals can only be met by combining the expertise of scientists and engineers across a broad spectrum of capability. The ability to engineer devices that can be deployed in challenging environments requires contributions from physics electronic engineering and materials science. The design of systems that possess the necessary characteristics for specific applications requires understanding from civil and electronic engineering, neuroscience and a wide range of stakeholders in the supply chain. The outputs from a sensor is of little value without the ability to translate raw data into actionable information: data analysis and AI skills are needed here. The research activities of the hub are designed to connect and develop these skills in a coordinated fashion such that the impact on our economy is accelerated.

    more_vert
  • Funder: UK Research and Innovation Project Code: ST/K002961/1
    Funder Contribution: 71,683 GBP

    The Klystron is a well-known, high efficiency amplifier, with a simple structure and scalable dimensions. It is typically designed with cylindrical reentrant cavities in the fundamental mode. However as the frequency of the device increases the size of the structure decreases. At mm-wave frequencies this leads to two problems: 1) Manufacturing the complex small scale structures. 2) The gap voltage decreases as the gap gets shorter leading to less gain. Most mm-wave klystron concepts reported in the literature are simply smaller versions of microwave klystrons. Even if, in principle the dimensions can be scaled according to the frequency increase, the fabrication challenges and the beam characteristic represent a huge obstacle to the realization of a working device when the frequency is higher than 50 GHz. This is consequently true for the frequency range around 95 GHz, which is of great interest for high bandwidth communication, radar and imaging applications. This proposal is aimed to overcome of the above-mentioned obstacle by the realization of a 95 GHz klystron by two innovative design solutions. The first solution is to operate the cavity at a higher order mode, chosen with similar Ez field distribution in the gap cross-section as the fundamental mode. The design will adopt reentrant cavities with square or rectangular shape, to be compatible with a photolithographic fabrication technique. The higher mode operation permits the design of the cavities with dimensions larger (at least 3-5 times) than in the case of fundamental mode operation. This eases the technological effort and makes possible a high quality fabrication by mechanical micromachining or by photolithographic processes. Further, the beam tunnel can be larger than in fundamental mode, to support higher beam current. In order to increase the interaction a number of intermediate buncher cavities, spaced all along the drift tube, will be used to increase the beam current modulation. A separate approach uses a lower frequency input cavity to modulate the beam current. As the beam travels down the drift tube beam harmonics start to form hence a higher order mode output cavity at an integer harmonic frequency of the input cavity can be excited hence acting as a high power frequency multiplier. As the input can be readily available from a lower frequency and hence more cost effective high power microwave source we are able to overcome any moderate gain of the device.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G004250/1
    Funder Contribution: 839,909 GBP

    This project aims at transferring an established synchrotron radiation (SR) technique with extremely high potential, X-ray phase contrast imaging (XPCI), into its practical application through the full development of a novel method devised by the fellow.Over the recent years, SR studies have demonstrated that XPCI could substantially change the face of X-ray imaging, as it would provide dramatic image improvements in fields as diverse as medicine, industry, security, scientific research and others.Early diagnosis of breast tumours, detection of faint lung lesions in planar images instead of CT scans, imaging of blood vessels without contrast agents, detection of microfractures and dilamination in composite materials are just a few examples of results obtained through SR XPCI which are currently not accessible by means of conventional x-ray imaging techniques.The problem so far is that XPCI was considered to be restricted to SR environments, which prevented its diffusion despite the impressive potentials. All XPCI techniques devised so far suffer when implemented with conventional sources, making its practical use substantially impossible.The applicant has recently devised a novel XPCI technique, based on the use of coded apertures, which solves most limitations of previous approaches. Proof-of-concept experiments have demonstrated beyond doubt that this new technique can provide results comparable to those obtained with SR while making use of diverging, polychromatic beams generated by conventional sources currently available off the shelf. As a consequence, this approach has the concrete potential to take XPCI out of SR environments and into its practical application for the first time. This would have an enormous impact both from the economic (the x-ray imaging market was estimated to be over 10B Euros already in 2005 - S. Rusckowski, CEO imaging systems, Philips) and the social point of view, as the general public would benefit from improved healthcare and security.The present project aims at achieving this important result through the development of the new XPCI technique. At the same time, it would target relevant application fields (breast imaging, plus others to be agreed with the end-users), and quantitatively assess the advantages that the new technique would bring in each of them.To achieve these objectives, the new method would be fully modelled by expanding simulation tools developed by the fellow during the proof-of-concept work. These models would be experimentally validated to guarantee reliability, and the output used to design an imaging prototype. On the basis of the resources available at the proposed host institution (two extra long optical tables plus two high-powered x-ray sources with different targets, and some detector prototypes), it would actually be possible to realize two separate prototypes, to target a wider range of applications. This imaging prototype(s) would then be thoroughly evaluated, and eventually used to image typical samples from the targeted applications. The analysis of these images, alongside the comparison with images of the same samples obtained with conventional systems, would allow the quantitative assessment of the advantages of the new technique on the targeted applications. In order to perform all tasks required by the above plan, the collaboration of ten partners from relevant fields have been sought. The appropriate input from physicians (two radiologists and a pathologist), detector developers (RAL, MI3), scientists with unique expertise in the field (ELETTRA, where the only in vivo station for mammography with SR XPCI has been built), and industrial companies active in related fields (Canon, e2v, X-Tek, 3DX-ray) has been secured and is documented through letters of support. To provide training to young scientist on the new topic and help the fellow on the everyday running of the project, the team would be completed by a PDRA and a PhD student.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N015126/1
    Funder Contribution: 4,574,890 GBP

    We will establish a UK quantum device prototyping service, focusing on design, manufacture, test, packaging and rapid device prototyping of quantum photonic devices. QuPIC will provide academia and industry with an affordable route to quantum photonic device fabrication through commercial-grade fabrication foundries and access to supporting infrastructure. QuPIC will provide qualified design tools tailored to each foundry's fabrication processes, multiproject wafer access, test and measurement, and systems integration facilities, along with device prototyping capabilities. The aim is to enable greater capability amongst quantum technology orientated users by allowing adopters of quantum photonic technologies to realise advanced integrated quantum photonic devices, and to do so without requiring in-depth knowledge. We will bring together an experienced team of engineers and scientists to provide the required breadth of expertise to support and deliver this service. Four work packages deliver the QuPIC service. They are: WP1 - Design tools for photonic simulation and design software, thermal and mechanical design packages and modelling WP2 - Wafer fabrication - Establishing the qualified component library for the different fabrication processes and materials and offering users a multi-project wafer service WP3 - Integrated device test and measurement - Automated wafer scale electrical and optical characterisation, alignment systems, cryogenic systems to support single-photon detector integration) WP4 - Packaging and prototyping - Tools for subsystem integration into hybrid and functionalised quantum photonic systems and the rapid prototyping of novel, candidate component designs before wafer-scale manufacturing and testing The design tools (WP1) will provide all the core functionality and component libraries to allow users to design quantum circuits, for a range of applications. We will work closely with fabrication foundries (WP2) to qualify the design libraries and to provide affordable access to high-quality devices via a multi-project wafer approach, where many users share the fabrications costs. Specialist test and measurement facilities (WP3) will provide rapid device characterization (at the wafer level), whilst packaging and prototyping tools (WP4) will allow the assembly of subsystems into highly functionalised quantum photonic systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G037264/1
    Funder Contribution: 7,446,270 GBP

    Broad ThemesCrime and terrorism threaten States, businesses and individuals; they increasingly exploit technology, sometimes more effectively than the security forces that oppose them. Our proposed Security Science DTC aims to promote fundamental science and research but to do so in a training environment that will provide a broader understanding of these threats; the pace at which they evolve, and the extent to which holistic responses are increasingly required if we are to contain them or to recover more rapidly from attack. We aim to prepare a future generation of security scientists better able to face these rapidly emerging new threats in crime and security. To do so this DTC will catalyse a truly interdisciplinary research effort that brings together multiple domains in security science to focus on the physical and cyber security of the State (borders and critical infrastructures, broadly construed, including financial, transport, energy, health and communication), business and the individual. Need and impact on the research landscape Science and technology have been utilized to protect against the threats outlined above, yet it is now widely accepted that security must be integrated, with a much greater awareness of the environmental operating contexts. This need has been expressed by governments (through policy papers and the creation of new bodies with interorganisational mandates such as the Serious and Organised Crime Agency), industry (through their increasing engagement with academic institutions to develop a new generation of security technologies that take into account factors such as behavioral response and ethical sensitivity) and research councils (eg. through their new 'Global Uncertainties: Security for all in a changing world' programme which cuts across all research council remits). The EPSRC is in an ideal position to invest in a national DTC where a critical mass of researchers can foster innovation and encourage and nurture an integrated systems approach that recognizes the importance of environmental context, human factors, and public policy to security solutions. This vision is based on the observation that the benefits of introducing advanced technologies into the security arena are significantly enhanced by engagement with the broader social, political and economic contexts within which those technological solutions apply. It is clear that disciplines as far apart as psychology and electronic engineering should come together in new ways to combat security threats in a holistic manner. This enhanced sensitivity to interconnectedness and multidisciplinary will lead to more effective science and encourage synergies to develop, increase knowledge transfer and facilitate engagement with end-users. Security is a challenging domain that drives adventurous research in a wide range of disciplines represented in this proposal (e.g. cryptography, radiation physics, nanotechnology). A DTC that helps secure the future supply of researchers with strong links to and appreciation of problems in the security context will help support the long term vigour of these disciplines. The DTC will also provide the UK with a hub to spark synergistic collaboration with other centres working in these areas such as the US Centres for Excellence (eg. National Consortium for the Study of Terrorism and Responses to Terrorism (START), University of Maryland). We further believe that this DTC in integrated security science will act as a prototype for future similar activities around the world. Ultimately, research associated with this DTC will help to position the UK as the international leader in the development of a uniquely equipped generation of security scientists, delivering innovative research to meet one of society's greatest challenges.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.