
The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.
EPSRC Centre for Doctoral Training in Resilient Decarbonised Fuel Energy Systems Led by the University of Nottingham, with Sheffield and Cardiff SUMMARY This Centre is designed to support the UK energy sector at a time of fundamental change. The UK needs a knowledgeable but flexible workforce to deliver against this uncertain future. Our vision is to develop a world-leading CDT, delivering research leaders with broad economic, societal and contextual awareness, having excellent technical skills and capable of operating in multi-disciplinary teams covering a range of roles. The Centre builds on a heritage of two successful predecessor CDTs but adds significant new capabilities to meet research needs which are now fundamentally different. Over 80% of our graduates to date have entered high-quality jobs in energy-related industry or academe, showing a demand for the highly trained yet flexible graduates we produce. National Need for a Centre The need for a Centre is demonstrated by both industry pull and by government strategic thinking. More than forty industrial and government organisations have been consulted in the shaping and preparation of this proposal. The bid is strongly aligned with EPSRC's Priority Area 5 (Energy Resilience through Security, Integration, Demand Management and Decarbonisation) and government policy. Working with our partners, we have identified the following priority research themes. They have a unifying vision of re-purposing and re-using existing energy infrastructure to deliver rapid and cost-effective decarbonisation. 1. Allowing the re-use and development of existing processes to generate energy and co-products from low-carbon biomass and waste fuels, and to maximise the social, environmental and economic benefits for the UK from this transition 2. Decreasing CO2 emissions from industrial processes by implementation of CCUS, integrating with heat networks where appropriate. 3. Assessing options for the decarbonisation of natural gas users (as fuel or feedstock) in the power generation, industry and domestic heating system through a combination of hydrogen enhancement and/or CO2 capture. Also critical in this theme is the development of technologies that enable the sustainable supply of carbon-lean H2 and the adoption of H2 or H2 enriched fuel/feedstock in various applications. 4. Automating existing electricity, gas and other vector infrastructure (including existing and new methods of energy storage) based on advanced control technologies, data-mining and development of novel instrumentation, ensuring a smarter, more flexible energy system at lower cost. Training Our current Centre operates a training programme branded 'exemplary' by our external examiner and our intention is to use this as solid basis for further improvements which will include a new technical core module, a module on risk management and enhanced training in inclusivity and responsible research. Equality, Diversity and Inclusion Our current statistics on gender balance and disability are better than the EPSRC mean. We will seek to further improve this record. We are also keen to demonstrate ED&I within the Centre staff and our team also reflects a diversity in gender, ethnicity and experience. Management and Governance Our PI has joined us after a career conducting and managing energy research for a major energy company and led development of technologies from benchtop to full-scale implementation. He sharpens our industrial focus and enhances an already excellent team with a track record of research delivery. One Co-I chairs the UoN Ethics Committee, ensuring that Responsible Innovation remains a priority. Value for Money Because most of the Centre infrastructure and organisation is already in place, start-up costs for the new centre will be minimal giving the benefit of giving a new, highly refreshed technical capability but with a very low organisational on-cost.