
The ROBINS project aims at filling the technology and regulatory gaps that today still represent a barrier to the adoption of Robotics and Autonomous Systems (RAS) in activities related to inspection of ships, understanding end user’s actual needs and expectations and analyzing how existing or near-future technology can meet them. ROBINS aims to improve the ability of RAS in sensing and probing, in navigation and positioning in confined spaces, as well as the capability to access and move safely within hazardous spaces. ROBINS also aims to provide new software tools for image and data processing, e.g. for production of 3D models and virtual/augmented reality environments, to provide the surveyor with the same level of information as obtained by direct human observation. A framework for the assessment of equivalence between the outcomes of RAS-assisted inspections and traditional procedures will also be provided by defining test procedures, criteria and metrics for the evaluation of RAS performance. Test campaigns will be performed both on-board and in a specific testing facility, where repeatable tests and measurements can be carried out. The development of robust technical solutions and a regulatory framework for RAS-assisted ship inspection is expected to streamline wide scale adoption of RAS technology in marine industry. The impact on safety, as far as hazardous environments are involved, can be easily understood and has already been witnessed in similar industrial domains (energy, oil and gas). The economic impact is expected to be beneficial for robotics industry (new supply chains and new potential markets), ICT industry (new services and products for data processing specific to marine industry), ship asset owners and operators (reduction of costs due to simplified preparation of items, reduced survey duration, improved quality and variety of inspection services) and certification bodies (new certification schemes for equipment, operators and procedures).
The GREEN HYSLAND PROJECT adresses the requirements of the call FCH-03-2-2020: H2 Islands by deploying a fully-integrated and functioning H2 ecosystem in the island of Mallorca, Spain. The project brings together all core elements of the H2 value chain i.e. production, distribution infrastructure and end-use of green hydrogen across mobility, heat and power. The overall approach of GREEN HYSLAND is based on the integration of 6 deployment sites in the island of Mallorca, including 7.5MW of electrolysis capacity connected to local PV plants and 6 FCH end-user applications, namely buses and cars, 2 CHP applications at commercial buildings, electricity supply at the port and injection of H2 into the local gas grid. The intention is to facilitate full integration and operational interconnectivity of all these sites. The project will also deliver the deployment of infrastructure (i.e. dedicated H2 pipeline, distribution via road trailers and a HRS) for distributing H2 across the island and integrating green H2 supply with local end-users. The scalability and EU replicability of this integrated H2 ecosystem will be showcased via a long-term roadmap towards 2050, together with full replication studies. The intention is to expand the impact beyond the technology demonstrations delivered by the project, setting the basis for the first H2 hub at scale in Sothern Europe. This will provide Europe with a blueprint for decarbonization of island economies, and an operational example of the contribution of H2 towards the energy transition and the 2050 net zero targets The project has already been declared to be a Strategic Project by the Balearic Regional Government, and has support from the National Government through IDAE.
In 2016, the Laser Interferometer Gravitational-Wave Observatory (LIGO) collaboration announced its first ground-breaking detections of gravitational waves sourced by binary black hole mergers. These observations herald the beginning of a new era in astronomy: gravitational waves are expected to shed light on many unsolved astrophysical and theoretical problems, such as finding neutron stars' equation of state, modelling the formation and evolution of compact objects and testing alternative theories of gravity. With LIGO's next observational run starting in late 2016 and the prospect of seeing the space-based interferometer eLISA fly in the near future, gravitational wave physics is set to be one of the most active and exciting fields in contemporary science. Black hole binaries are going to be key targets both for LIGO and eLISA: it is thus crucial to perfect the modelling of these systems, as this will enable us to extract the rich information encoded in the gravitational wave signals that will be detected in the years to come. This project proposes the development of a state-of-the-art code to study extreme mass-ratio inspirals into Kerr black holes, including the full gravitational self-force (i.e. both conservative and dissipative effects). The project will contribute to the construction of a template bank for eLISA. Furthermore, it will inform the calibration of effective-one-body (EOB) and phenomenological waveform models which form the basis of LIGO-Virgo data analysis.