
Turbidity currents are the volumetrically most import process for sediment transport on our planet. A single submarine flow can transport ten times the annual sediment flux from all of the world's rivers, and they form the largest sediment accumulations on Earth (submarine fans). These flows break strategically important seafloor cable networks that carry > 95% of global data traffic, including the internet and financial markets, and threaten expensive seabed infrastructure used to recover oil and gas. Ancient flows form many deepwater subsurface oil and gas reservoirs in locations worldwide. It is sobering to note quite how few direct measurements we have from submarine flows in action, which is a stark contrast to other major sediment transport processes such as rivers. Sediment concentration is the most fundamental parameter for documenting what turbidity currents are, and it has never been measured for flows that reach submarine fans. How then do we know what type of flow to model in flume tanks, or which assumptions to use to formulate numerical or analytical models? There is a compelling need to monitor flows directly if we are to make step changes in understanding. The flows evolve significantly, such that source to sink data is needed, and we need to monitor flows in different settings because their character can vary significantly. This project will coordinate and pump-prime international efforts to monitor turbidity currents in action. Work will be focussed around key 'test sites' that capture the main types of flows and triggers. The objective is to build up complete source-to-sink information at key sites, rather than producing more incomplete datasets in disparate locations. Test sites are chosen where flows are known to be active - occurring on annual or shorter time scale, where previous work provides a basis for future projects, and where there is access to suitable infrastructure (e.g. vessels). The initial test sites include turbidity current systems fed by rivers, where the river enters marine or freshwater, and where plunging ('hyperpycnal') river floods are common or absent. They also include locations that produce powerful flows that reach the deep ocean and build submarine fans. The project is novel because there has been no comparable network established for monitoring turbidity currents Numerical and laboratory modelling will also be needed to understand the significance of the field observations, and our aim is also to engage modellers in the design and analysis of monitoring datasets. This work will also help to test the validity of various types of model. We will collect sediment cores and seismic data to study the longer term evolution of systems, and the more infrequent types of flow. Understanding how deposits are linked to flows is important for outcrop and subsurface oil and gas reservoir geologists. This proposal is timely because of recent efforts to develop novel technology for monitoring flows that hold great promise. This suite of new technology is needed because turbidity currents can be extremely powerful (up to 20 m/s) and destroy sensors placed on traditional moorings on the seafloor. This includes new sensors, new ways of placing those sensors above active flows or in near-bed layers, and new ways of recovering data via autonomous gliders. Key preliminary data are lacking in some test sites, such as detailed bathymetric base-maps or seismic datasets. Our final objective is to fill in key gaps in 'site-survey' data to allow larger-scale monitoring projects to be submitted in the future. This project will add considerable value to an existing NERC Grant to monitor flows in Monterey Canyon in 2014-2017, and a NERC Industry Fellowship hosted by submarine cable operators. Talling is PI for two NERC Standard Grants, a NERC Industry Fellowship and NERC Research Programme Consortium award. He is also part of a NERC Centre, and thus fulfils all four criteria for the scheme.
Network partners The project is a cross sector partnership between universities and the theatre area of the cultural industries. The core institutions will be represented on the steering committee: the Universities of Leeds, Newcastle, Zhejiang, Nanjing, California Davis, British Columbia, and Queensland with the Royal Shakespeare Company, West Yorkshire Playhouse and Sichuan Peoples' Art Theatre. These institutions are leaders in their fields with international profiles which will be further enhanced by this proposed network. The RSC's first production of a Chinese play 'The Orphan of Zhao' (a 13th century classical play based on historical events during 600-500BC yet with period transcending themes) provides a good topic for the network to examine how China and Chinese culture are presented in intracultural, intercultural and transcultural theatre productions, and how languages and translations play a key role in stage productions to form or to alter people's perception of others' cultures. Academic outputs in the funding period (01/2013 - 08/2014) We will carry out conventional and practice-led research (University of Leeds is an international leader for both), workshops for the future plan of the repository of stage productions, development of curricula on translating Chinese drama, and practical work involving professionals and general public. Through these activities, the network attempts to seek answers to the following research questions and related issues, allowing for further definition, clarification or alteration during the course of the project. Primary question and related issues How is China constructed and projected through intra/inter/trans-cultural stage productions in Chinese (including different dialects) and in English, and how can research into languages and translations contribute to understanding of the perceptions of China? To answer the overarching question, the following will be addressed through proposed activities: 1. Why has the ancient play 'The Orphan' (first written in the 13th century based on historical events during 600-500BC) fascinated so many artists? What images do various Chinese productions (in the styles of indigenous song-dance theatre, Western-inspired spoken drama and Western opera) and now that of the RSC's attempt to create? How can a classical Chinese play be made relevant to today's British/ Chinese youth and how do we tackle language, culture and generation barriers? 2. Is 'translation' involved in theatre even within China's own territories? Does 'translation' only mean 'verbal rendition' and what happens when a written text transfers to performance and travels from one regional genre to another in different dialects and stage vocabulary? What levels of translation are involved when an English poet adapts 'The Orphan' to be directed and performed by British artists? How does the intracultural encounter contribute to the intercultural work? 3. How does theatre shape perception of China and Chinese culture through the languages and translations it involves? 4. What skills gaps exist in the UK, and what strategies exist to fill those gaps i.e. to help students build the capacity to tackle complicated language and culture issues in translations? The introduction of a new module 'Translating Chinese Drama' at Newcastle University will serve as a case study. 5. How can intercultural theatres develop, based on a genuine dialogue in the highly complex global cultural landscape, engaging issues from broader perspectives involved in languages and translations? 6. How can digital technology be used to share knowledge and expertise on Chinese theatre and to enrich international and intercultural engagement?
Economies in South East Asia are developing rapidly leading to rapidly growing emissions of a variety of important chemicals including halocarbon compounds that can impact the ozone layer and nutrients and contaminants that can alter ocean biological processes. These emissions are carried towards the Pacific Ocean mixing with dust from the Asian deserts. The subsequent deposition of this material can impact on ocean productivity and the transport of ozone damaging chemicals southwards allows them to enter the equatorial region with rapid transfer to the stratosphere with attendant threats to stratospheric ozone. A recently developed Taiwanese sampling station offers an ideal location to study this Asian outflow as it starts its journey and hence to better understand its current and potential future impacts in the region and globally. This grant aims to develop links between a leading UK research group and colleagues in Taiwan in preparation for a major grant application for fields studies in this region.
Turbidity currents are the volumetrically most import process for sediment transport on our planet. A single submarine flow can transport ten times the annual sediment flux from all of the world's rivers, and they form the largest sediment accumulations on Earth (submarine fans). These flows break strategically important seafloor cable networks that carry > 95% of global data traffic, including the internet and financial markets, and threaten expensive seabed infrastructure used to recover oil and gas. Ancient flows form many deepwater subsurface oil and gas reservoirs in locations worldwide. It is sobering to note quite how few direct measurements we have from submarine flows in action, which is a stark contrast to other major sediment transport processes such as rivers. Sediment concentration is the most fundamental parameter for documenting what turbidity currents are, and it has never been measured for flows that reach submarine fans. How then do we know what type of flow to model in flume tanks, or which assumptions to use to formulate numerical or analytical models? There is a compelling need to monitor flows directly if we are to make step changes in understanding. The flows evolve significantly, such that source to sink data is needed, and we need to monitor flows in different settings because their character can vary significantly. This project will coordinate and pump-prime international efforts to monitor turbidity currents in action. Work will be focussed around key 'test sites' that capture the main types of flows and triggers. The objective is to build up complete source-to-sink information at key sites, rather than producing more incomplete datasets in disparate locations. Test sites are chosen where flows are known to be active - occurring on annual or shorter time scale, where previous work provides a basis for future projects, and where there is access to suitable infrastructure (e.g. vessels). The initial test sites include turbidity current systems fed by rivers, where the river enters marine or freshwater, and where plunging ('hyperpycnal') river floods are common or absent. They also include locations that produce powerful flows that reach the deep ocean and build submarine fans. The project is novel because there has been no comparable network established for monitoring turbidity currents Numerical and laboratory modelling will also be needed to understand the significance of the field observations, and our aim is also to engage modellers in the design and analysis of monitoring datasets. This work will also help to test the validity of various types of model. We will collect sediment cores and seismic data to study the longer term evolution of systems, and the more infrequent types of flow. Understanding how deposits are linked to flows is important for outcrop and subsurface oil and gas reservoir geologists. This proposal is timely because of recent efforts to develop novel technology for monitoring flows that hold great promise. This suite of new technology is needed because turbidity currents can be extremely powerful (up to 20 m/s) and destroy sensors placed on traditional moorings on the seafloor. This includes new sensors, new ways of placing those sensors above active flows or in near-bed layers, and new ways of recovering data via autonomous gliders. Key preliminary data are lacking in some test sites, such as detailed bathymetric base-maps or seismic datasets. Our final objective is to fill in key gaps in 'site-survey' data to allow larger-scale monitoring projects to be submitted in the future. This project will add considerable value to an existing NERC Grant to monitor flows in Monterey Canyon in 2014-2017, and a NERC Industry Fellowship hosted by submarine cable operators. Talling is PI for two NERC Standard Grants, a NERC Industry Fellowship and NERC Research Programme Consortium award. He is also part of a NERC Centre, and thus fulfils all four criteria for the scheme.