
At the Large Hadron Collider (LHC), protons are collided at the highest possible energy to generate subatomic elementary particles. We use the results of these collisions to understand our universe at the most fundamental level. Many theorists believe that new physics exists at a very high energy. The top quark is the heaviest elementary particle known to date with unique properties. It is therefore naturally suspected to have hidden connections with new physics. The simultaneous production of four top-quarks (tttt) is the most energetic process accessible with the LHC, making it a unique place to search for heavy new physics, which are less likely to appear elsewhere. The first evidence of these extremely rare events was only revealed last year, and we know very little about them. With the world-record energy at LHC Run3 (13.6 TeV), we expect 20% higher tttt events production rate. This offers a timely opportunity to further study this process. With an aim to find new physics, we will study tttt events in unprecedented detail with the ATLAS experiment at the LHC. We will measure the inclusive production rate and the kinematic properties of these events. We will use the measured results to probe new physics, with unique approaches that do not rely on new physics predictions made upon specific assumptions (which could be wrong). The results have the potential to reveal new physics that are too energetic and beyond the reach of the LHC. This will be the first time this is done for tttt events. The measured tttt event kinematics will be corrected to remove effects from the detector resolution and acceptance. This allows theorists to directly test their new physics predictions against the experimental results, continuously generating impact in the relevant scientific community. We will combine the results of tttt events with those of other types of events containing top quarks to build a global picture of the top quark in terms of its subtle connections to new physics.
Our understanding of cosmology and fundamental physics continues to be challenged by ever more precise experiments. The resulting “standard” model of cosmology describes the data well, but is unable to explain the origin of the main constituents of our Universe, namely dark matter and dark energy. More than an order of magnitude improvement in the quality and quantity of observational data is needed. This has motivated ESA to select Euclid as the second mission of its cosmic vision program, with a scheduled launch in 2020. It is designed to accurately measure the alignments of distant galaxies due to the differential deflection of light-rays by intervening structures, a phenomenon called gravitational lensing. Euclid will measure this signal by imaging 1.5 billion galaxies with a resolution similar to that of the Hubble Space Telescope. Although Euclid is designed to minimize observational systematics the observations are still compromised by two factors. Various instrumental effects need to be corrected for, and the tremendous improvement in precision has to be matched with comparable advances in the modelling of astrophysical effects that affect the signal. The objective of this proposal is to make significant progress on both fronts. To do so, we will (i) quantify the morphology of galaxies using archival HST observations; (ii) carry out a unique narrow-band photometric redshift survey to obtain state-of-the-art constraints on the intrinsic alignments of galaxies that arise due to tidal interactions, and would otherwise contaminate the cosmological signal; (iii) integrate these results into the end-to-end simulation pipeline; (iv) perform a spectroscopic redshift survey to calibrate the photometric redshift technique. The Euclid Consortium has identified these as critical issues, which need to be addressed before launch, in order to maximise the science return of this exciting mission, and enable the dark energy science objectives of Europe.
NEWS promotes the collaboration between European, US and Japanese research institutions in some key areas of fundamental physics. LIGO and Virgo collaborations have built the largest gravitational wave observatories and exploit the propagation of light and spacetime to detect gravitational waves and probe their sources. The first observation of a signal from a merging black hole system has inaugurated the era of gravitational wave astronomy. The Large Area Telescope collaboration operates a gamma-ray telescope onboard the Fermi Gamma Ray Space Telescope mission and has revolutionized our view of the gamma-ray Universe, by increasing the number of known sources, unveiling new classes of gamma-ray emitters, and probing particle acceleration and electromagnetic emission in space with unprecedented detail. Fermi is the reference all-sky gamma-ray monitor for the follow-up searches for electromagnetic counterparts of gravitational wave sources. The multimessenger astronomical observations will soon be enriched by X-ray polarization detectors. New-generation space telescopes will measure the polarization of X-rays from the cosmic sources and probe the laws of physics under extreme conditions of gravitational and electromagnetic fields. A complementary approach to probe the Universe is provided by particle accelerators built in laboratories. FNAL will provide the cleanest probes for physics beyond the Standard Model of particle physics. The Muon (g-2) experiment will measure the muon anomalous magnetic moment with unprecedented precision. Mu2e will search for the neutrinoless coherent muon conversion to an electron in the Coulomb field of a nucleus, which would be the unambiguous evidence of new, unknown, physics. These endeavors require innovative detectors and cutting-edge technologies that NEWS will develop to open new “windows” in fundamental physics.
Astrophysical and cosmological observations imply that only 5% of the energy of the Universe is made of conventional matter. The rest is composed by a new type of matter, the so-called dark matter, which has no (or extremely weak) interactions with the known particles, and a yet more puzzling repulsive form of energy accelerating the universe's expansion (dark energy). Advancing our knowledge on the nature of this dark universe is the focus of a global multidisciplinary effort in astroparticle physics. Indeed, solving these puzzles have been identified as a priority for the future of particle physics and cosmology by several scientific agencies worldwide. In this context, UNDARK’s main objective is to transform the Instituto de Astrofísica de Canarias (IAC) into a world-class institution in astroparticle physics. This will be accomplished by leveraging IAC's expertise in astronomy and astrophysics with the excellence and theoretical expertise provided by the world’s leading particle physics laboratory (CERN), and three renowned EU institutions in astroparticle physics. UNDARK's work plan includes an ambitious program of networking, scientific events, staff exchanges and scientific collaborations that will significantly enhance the IAC's research capacity and creativity, and will increase its reputation within the EU and global R&I systems. This will be complemented by an extensive outreach program developed in parallel which aims to boost the recognition of the IAC within the general public and public funding bodies. Finally, UNDARK also incorporates training activities focused on research management to increase the management capacity of the IAC and its involvement in HE funding programs. In summary, UNDARK has been designed with the goal of achieving excellence at the Widening coordinator in a priority area of fundamental physics research, thereby addressing one of the most significant challenges in contemporary physics.