
The goal of UrbanAIR is to develop a new digital twin that supports decision-makers in urban areas to deal with urban design dilemmas in atmospheric heat and air quality to maximise the health and socio-economic well-being of its citizens affected by climate change. It will provide critical tools for climate adaptation and hazard control through urban design and planning, including very high-resolution model components of the urban atmosphere. UrbanAIR is designed by a consortium that covers the full value chain to revolutionize digital twin platforms by starting from the perspective of the end user. Through co-creation with the end users and a balanced evaluation of the decision criteria, the overall objective of UrbanAIR is to yield a dynamic, user-friendly infrastructure integrated into the Destination Earth infrastructure that empowers municipalities and industries to face urgent urban climate risks. The scales in the atmospheric models in UrbanAIR cover the full range from the regional to the neighbourhood level. This innovative multiscale approach is achieved through the development of software interfaces for the modular coupling of atmospheric models. AI-based emulators allow for the acceleration of these computationally expensive models, which, together with the application of advanced data assimilation techniques, allows the quantification of risks and uncertainties for the UrbanAIR scenarios. Corresponding behavioural models simulate the human response to changes in climate and associated hazards. The resulting scenarios form the input to the objective evaluation of the criteria for decision-making. With these science-based tools for scenario simulation of natural and human behaviour, reliable risk assessment, and balanced decision analysis, UrbanAIR will develop tools and the infrastructure to support decision-makers in cities. This will pave the way for effective climate adaptation by developing tools for a safer, healthier, and more resilient future.
IS-ENES3 will deliver the third phase of the distributed e-infrastructure of the European Network for Earth System Modelling (ENES). IS-ENES3 will be initiated as the European climate modelling community faces the challenges of contributing to the next assessment report of the Intergovernmental Panel on Climate Change through the 6th phase of the Coupled Model Intercomparison Project. IS-ENES3 will address these challenges by developing, documenting and deploying new and advanced models and tools, standards and services to deal with unprecedented data volumes and model complexity. IS-ENES3 will stimulate collaboration, disseminate software and data, and further integrate the European climate science community. IS-ENES3 will support climate research, climate impact science, and the climate services industry. It will bring down barriers of access, and expand the community who can exploit the data and knowledge produced by state-of-the-art climate models. In doing so, it will find innovative ways of working with the Copernicus programme, other parts of the European data infrastructure, and with the high performance computing and data analytics industries. IS-ENES3 will be delivered by partners combining expertise in climate modelling, computational science, data management, climate impacts and climate services, with proven ability to increase the influence of European science internationally. It will deliver the European part of the Earth System Grid Federation and a central point of entry to services providing access to new data, software, models and tools. Joint research will support a new community sea ice model, promote efficient use of high-performance computing, improve the European common model evaluation framework, and develop and enhance services on data. Networking will grow the user base, increase the cohesion of the climate modelling community, promote innovation and prepare for a long term sustainable infrastructure in support of climate modelling.
The path towards exascale computing holds enormous challenges for the community of weather and climate modelling regarding portability, scalability and data management that can hardly be faced by individual institutes. ESiWACE2 will therefore link, organise and enhance Europe's excellence in weather and climate modelling to (1) enable leading European weather and climate models to leverage the performance of pre-exascale systems with regard to both compute and data capacity as soon as possible and (2) prepare the weather and climate community to be able to make use of exascale systems when they become available. To achieve this goal, ESiWACE2 will (a) improve throughput and scalability of leading European weather and climate models and demonstrate the technical and scientific performance of the models in unprecedented resolution on pre-exascale EuroHPC systems, (b) evaluate and establish new technologies such as domain specific languages and machine learning for use in weather and climate modelling, (c) enhance HPC capacity via services to the weather and climate community to optimize code performance and allow model porting, (d) improve the data management tool chain from weather and climate simulations at scale, (e) foster co-design between model developers, HPC manufacturers and HPC centres, and (f) strengthen interactions of the community with the European HPC Eco-system. ESiWACE2 will deliver configurations of leading models that can make efficient use of the largest supercomputers in Europe and run at unprecedented resolution for high-quality weather and climate predictions. This will be a beacon for the community in Europe and around the world. ESiWACE2 will develop HPC benchmarks, increase flexibility to use heterogeneous hardware and co-design and provide targeted education and training for one of the most challenging applications to shape the future of HPC in Europe.
The requested 10% share of renewable energy in the transport sector in every EU member state by 2020 and the targeted 40% share of low carbon sustainable fuels in aviation by 2050 will necessitate the technical support for approval and production of new or existing renewable fuel blend stock. JETSCREEN will provide alternative fuel producers and, air framers and aero-engine OEMs with knowledge based screening tools. These tools will assess the compatibility of fuels with respect to the fuel system and the combustion system and will help evaluate the chances of success in an approval process. The JETSCREEN objectives are to develop a screening and optimization platform, which integrates distributed design tools and generic experiments to assess the risks and benefits of alternative fuels, and to optimize alternative fuels for a maximum energy per kilogram of fuel and a reduction of pollutants emissions. As a step prior to the lengthy and costly approval process, screening uses low cost small scale experimental and model-based testing to predict the impact of fuel on selected engine and fuel system components. The methodology is based on deriving predictive tools which capture fuel composition’s effects on properties and sub-processes which have a direct impact on the performance of the fuel system and on the performance and emissions of the combustion system. Moreover, once the sequence of models exists to derive a relationship between fuel composition and sub-system performance then the reverse direction namely optimization is possible; for targeted performance or emission reductions can then be connected to a modification in the fuel formulation. The ambition of the JETSCREEN program is to deliver, for candidate fuels, a certificate of analysis where the key results of the ASTM D4054 approval process are listed. The main innovation would be that the only input is the detailed composition of the candidate fuel and the results come from models and simulation.